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Abstract

Microservices architecture has rapidly gained popularity for building large-scale latency-
sensitive online applications. The architecture supports decomposing an application into a
collection of fine-grained and loosely-coupled services called microservices. Each microser-
vice typically implements a single business capability with inter-microservice communication
enabled via Application Programming Interfaces (APIs). This modular architecture enables
independent management of microservices for agility, scalability, and fault isolation. Given
the benefits of this modular architecture, microservices architecture is widely replacing
existing deployments implemented using monolithic or multi-tier architectures at Microsoft,
Amazon, Netflix, Twitter, etc. However, the modular design of microservices architecture
leads to a large graph of interacting microservices whose influence on each other is non-
trivial. As a result, performance management and debugging of microservices architecture
is a challenging problem. This thesis develops techniques built on optimization theory and
machine learning to address performance management problems in microservices architec-
ture. Specifically, this thesis focuses on solving two critical issues faced in microservices
architecture: configuration tuning and bottleneck detection.

Application configuration tuning is essential to improve performance and utilization,
but the microservices architecture leads to a very large configuration search space with
interdependent parameters. We jointly optimize the parameters to deal with interdependence
and develop practical dimensionality reduction strategies based on available system char-
acteristics to reduce the size of the search space. Our pre-deployment (offline) evaluation
of different optimization algorithms and dimensionality reduction techniques across three
popular benchmark applications highlights the importance of configuration tuning in reduc-
ing tail latency (by as much as 46%). The right combination of optimization algorithms
and dimensionality reduction techniques can provide substantial latency improvements by
identifying the right subset of parameters to tune, reducing the search space by as much as
83%.

Post-deployment tuning of real-world applications requires dynamic reconfiguration as
the workloads are complex and time-varying. Moreover, the tuning process must reduce
application interruptions to maintain the quality of service and application uptime. We design
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OPPerTune, a framework that uses various machine learning algorithms to handle the chal-
lenges involved with post-deployment tuning. We evaluate OPPerTune on a benchmarking
application deployed on an enterprise cluster with synthetic and production traces to ana-
lyze its effectiveness in (a) determining which configurations to tune, and (b) automatically
managing the scope at which to tune the configurations. Our experimental results show that
OPPerTune reduces the end-to-end P95 latency of microservices applications by more than
50% over expert configuration choices made ahead of deployment.

Beyond configuration tuning, it is critical to detect and mitigate sources of performance
degradation (bottlenecks) to avoid revenue loss. As part of the proposed work, we will
investigate techniques to detect and mitigate bottlenecks in microservices applications.
Specifically, we plan to use graph learning algorithms to exploit the inherent graph data
in microservices application deployments to detect bottlenecks. We plan on exploring
different mitigation strategies, including configuration tuning (e.g., autoscaling, application
configuration tuning, etc.). Our preliminary results using graph neural networks show that we
can improve bottleneck detection accuracy and precision by up to 15% and 14%, compared
to the techniques used in existing work.

It is our thesis that optimization and machine learning algorithms coupled with system
characteristics can effectively address the complexities of configuration tuning and bottleneck
detection and mitigation in large-scale microservices applications.
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Chapter 1

Introduction

Software architecture is the abstract structure of a software system that represents its de-
sign decisions and behaviors [75]. Among the various architectural styles, microservices
architecture, an adaptation of service-oriented architecture [43], is gaining rapid industry
acceptance in building large-scale latency-sensitive distributed applications. Performance
and availability are paramount in such applications as they usually provide customer-facing
services like video streaming, ride-hailing, and social media [61, 62, 73, 179, 112].

Microservices architecture arranges an application as a suite of loosely coupled, fine-
grained services called microservices that communicate via well-defined APIs agnostic to
the implementation. This design enables teams to manage and implement each microservice
independently of others using the best software stack for the specific business functionality.
Breaking down an application into small independent services results in many advantages,
including scalability, fault isolation, data isolation, and ease of deployment and maintenance.
Accordingly, distributed applications implemented using this architectural style are widely
replacing those implemented using monolithic or multi-tier architecture at Amazon, Net-
flix, Uber, Twitter, etc. [73, 112]. Table 1.1 shows the difference between monolithic and
microservices architecture.

With the microservices architecture, an online application can be implemented as a
frontend (e.g., Nginx), database (e.g., MongoDB) and caching microservices (e.g., Redis)
along with services that implement the business logic. The business logic is usually imple-
mented using frameworks like Apache Thrift [1] and gRPC [8] that provide a number of
developer-friendly features.

The modular architecture of microservices architecture offers numerous advantages. A
few of the important advantages are:

• Independent deployment: Each microservice can be independently deployed.
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Monolithic architecture Microservices architecture

All the functionalities exist in a single
code base

Each business functionality is imple-
mented as a separate service

The whole application is redeployed for
smaller changes

Modular architecture enables independent
deployment

Scaling is expensive as the whole applica-
tion has to be scaled

Only the microservices that are handling
the large load can be scaled

Adapting to new technology is time, and
cost-inefficient due to tight coupling be-
tween functionalities

Each microservice can be implemented
using the technology suitable for the busi-
ness logic it implements

Database is shared Each microservice has its own database

Table 1.1 Differences between monolithic and microservices architecture.

• Flexible scaling: Each microservice can be independently scaled based on the load it
handles.

• Continuous development: Updates are iterative through the redeployment of a small
subset of microservices leading to constant improvements to the product.

• Loosely coupled: Each microservice can use technology suitable for the business
logic it implements.

• Improved fault tolerance: Failure of a single microservice does not bring down the
whole application.

Despite its many advantages, the microservices architecture has a few disadvantages too.
Mainly, the highly complex and large graph of interacting microservices exacerbates some of
the traditional software engineering problems:

• Configuration tuning: The large configuration state space and the interdependent
parameters complicate configuration tuning [146, 147, 149, 97].

• Operational complexity: The distributed and independent design requires specialized
teams (e.g., DevOps) and tooling to manage the application’s life cycle [162, 84].

• Resource management: Fine-grained resource management approaches that are
application-aware and latency-aware are essential to maintain the quality of service [73,
129, 74]

• Bottleneck detection and mitigation: The cascading performance degradation com-
mon to microservices aggravates bottleneck detection and mitigation [74, 129, 145].
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• Testing and monitoring: As microservices are distributed, testing and monitoring
them is a challenging task [167, 84].

1.1 Challenges
We will discuss the challenges of configuration tuning (both pre-deployment and post-
deployment) and bottleneck detection and mitigation from the list of challenges presented in
the previous section.

• Pre-deployment configuration tuning: The microservice architecture has numer-
ous advantages, but one major challenge is adjusting the configuration settings of
individual microservices before deployment. With microservices applications, con-
figuration tuning is especially complicated owing to the large configuration search
space, interdependent parameters, dependency between parameters of different mi-
croservices, interference among colocated microservices and non-linear relationship
between microservices parameters and performance.

• Post-deployment configuration tuning: The configuration obtained via pre-deployment
tuning may not work well in the long term. The parameters should be tuned contin-
uously to optimize the performance and efficiency as software upgrades, dynamic
workloads, and changes in the underlying hardware affect the application’s behavior
continuously. Recent efforts have proposed using machine-learning-based techniques
to automate the process of configuration tuning, using online learning or reinforcement
learning to set configurations, observe application state, and iteratively refine the con-
figuration. However, this approach is not a complete solution as it only addresses one
aspect of the end-to-end process of configuration tuning.

The automated approach for configuration tuning should take into consideration several
factors. First, it should determine which components or layers of the service to tune
and which parameters to focus on. Second, it should consider the varying difficulty
of tuning different types of parameters and use a small number of iterations to avoid
disruptions. Third, it should determine the right context or scope for each tuning
instance. Finally, the approach should work with numerical and categorical parameters
and be efficient and quick to converge.

• Bottleneck detection and mitigation: Detecting and mitigating performance bottle-
necks in online applications is crucial to provide a good customer experience [46, 62].
For example, experiments at Amazon showed that an additional 100ms of latency
could reduce sales by 1%; similarly, experiments at Google showed that increasing the
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time to display search results by 500ms can reduce the revenue by 20% [99]. Long
tail latencies that significantly affect the revenues of online applications are often
a result of performance bottlenecks that do not necessarily lead to errors or faults
and instead arise due to resource saturation, resource contention, or microservices
application misconfiguration [73, 74, 129, 146]. Regardless of the underlying cause
of performance bottlenecks, it is essential to have a technique that quickly adapts to
dynamic online workloads and accurately detects bottlenecks with high recall and
precision. A low recall is especially problematic as it implies that performance issues
go unaddressed.

Microservices architecture has unique characteristics compared to other architectural
styles that complicate bottleneck detection. Mainly the back-pressure effects and
cascading performance degradation due to the complex interaction between microser-
vices, the scarcity of labeled production data for bottlenecked classes, time-varying
interactions due to software updates, and components like caches, message queues, etc.,
exacerbate the problem. These complexities also necessitate mitigation approaches
tailored to microservices [74].

1.2 Our Contributions
This section overviews our contributions in addressing the challenges elaborated in Sec-
tion 1.1.

• Pre-deployment configuration tuning: We consider the challenges of pre-deployment
configuration tuning and employ different techniques to tackle them. To address
the problem of inter-dependent parameters, we consider joint optimization of the
parameter space. We conduct an extensive experimental investigation of six black-box
optimization algorithms with the goal of minimizing the tail latency (up to 46%) of
benchmarking applications. To address the key challenge of a large configuration space
when jointly tuning microservices applications, we investigate various dimensionality
reduction approaches to identify a subset of microservices that are most likely to impact
end-to-end application latency. We can significantly improve tail latency by employing
dimensionality reduction while only having to tune about 18% of all microservices. In
fact, within a given budget on the number of iterations of the optimization algorithm,
optimizing with dimensionality reduction can further improve tail latency (by about
6.5%) compared to optimizing without any dimensionality reduction since the search
space is reduced, thereby aiding the optimization.

• Post-deployment configuration tuning:
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We use OPPerTune (Online Post-deployment Performance Tuner), a configuration
tuning service designed, developed and deployed with our collaborators to address
the challenges of post-deployment configuration tuning. Application operators can
use OPPerTune to create automatic tuning instances, specifying the configuration
parameters they wish to tune. The OPPerTune service supports (a) various algorithms
in its back-end that the tuning instances could use and (b) ways to automatically create,
manage, and scope the instances needed to tune the performance of large-scale complex
services. We evaluate the framework on a benchmarking application using synthetic
and production traces showing tail latency improvements of up to 50%.

• Bottleck detection and mitigation: In the proposed work, we explore the use of
Graph Neural Networks (GNNs) [59, 180] to detect bottlenecks in online microservices
applications. GNNs are ideally suited for analyzing microservices applications, as
they capture the back-pressure and cascading performance degradation along the call
graphs [73, 126], learn the dependence of graphs via message passing between the
nodes of graphs [180], generalize for the dynamic call graphs that are common in
microservices [86, 83, 112, 129], and be regularized to ensure representation learning
equilibrium across multiple classes thereby avoiding the multi-class imbalance problem
seen in traditional ML algorithms [142]. In this preliminary work, we use open-source
traces with single bottlenecks to evaluate the model on a simple set of traces. We
propose to create a dataset of traces consisting of single and more realistic multiple
bottlenecks from different sources (interference, misconfiguration, etc.). We will
explore different detection and mitigation strategies for such multiple bottlenecks as
part of the proposed work.

1.3 Chapter organization
The rest of this report is organized as follows. In Chapter 2 we provide background on
microservices and important prior works that tackle the challenges of microservices architec-
ture. Chapter 3 presents our approach to pre-deployment configuration tuning. Chapter 4
presents our work on using configuration tuning frameworks to tackle the challenges of post-
deployment configuration tuning. In Chapter 5 we discuss the proposed work on bottleneck
detection and mitigation. Finally, in Chapter 6, we discuss future work and conclude this
report.





Chapter 2

Background

The adoption of microservices architecture in the industry is growing rapidly due to its nu-
merous advantages. However, it also comes with certain disadvantages that can significantly
impact performance management as the scale increases. To gain a deeper understanding of
these implications and the current state of research, this section provides a brief overview
of the history of microservices, its key features, benchmarking applications, and large-scale
production applications, followed by a discussion of some of the related works.

2.1 Microservices Architecture

Software architecture presents the design and behavior of the system or the application. It also
largely dictates how different aspects of the application’s life cycle are managed. Hence, it is
important to find the right architectural style keeping in mind the evolution of the application.
Among the various architectural styles, Service Oriented Architecture (SOA), the precursor
to microservices architecture, shares some characteristics (e.g., modularity) of microservices
architecture. The main difference lies in the scope of the individual services [65, 23].
SOAs have an enterprise scope with a main focus on the reusability of the services, and
microservices have an application scope focusing on decoupling the services.

The term microservices was first introduced in 2011 at a workshop on software archi-
tecture patterns [65]. However, similar architectural styles under different names (e.g.,
Fine-grained SOA [65]) existed before this. While there does not exist a strict definition of
microservices architecture, certain characteristics wholly or partially make up microservices
architecture. These characteristics include a) modular services, b) organized around business
capabilities, c) decentralized governance, d) decentralized data management, e) infrastructure
automation, f) fault tolerance, and g) evolutionary design [23, 65, 15].
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2.1.1 Characteristics
In this section, we discuss a few important characteristics of microservices architecture in
detail:

• Modular and independent services: With the microservices architecture, the goal is
to design services (microservices) at the application level that can be independently
deployed and upgraded. These microservices differ from other modular components,
like libraries, because they are a single or group of processes communicating over
a web service request or a Remote Procedure Call (RPC) with other microservices.
Moreover, when modified, components like libraries would require redeploying the
whole application, unlike microservices, where only the modified service is redeployed.
The downside of this design is that remote calls are more expensive than in-process
calls.

• Organized around business capabilities: Traditionally, the components of an appli-
cation are decided based on the technology layer. For example, separate large teams
would work on user interfaces, server-side logic, and databases across products in an
enterprise. Due to tight coupling between such components, cross-team collaboration
is necessary even for small changes. In the microservices architecture, a large and
cross-functional team handles one particular service or application, i.e., based on
business capability, with smaller groups owning individual services based on busi-
ness functionality (microservices). This allows smaller teams to work together on an
application, easing communication and collaboration efforts.

• Decentralized data management: In the microservices architecture, each microser-
vice manages its own database. The database technology or the system used could
be different across the microservices of the same application. This contrasts with the
monolithic design, where a single logical database is shared across the application,
sometimes across an enterprise’s applications. The decentralized data management in
the microservices architecture decouples the microservices, which is one of its main
objectives. However, data might be duplicated across microservices, leading to data
integrity and consistency problems [100].

• Improved fault tolerance: The architecture requires that the application be robust to
individual microservice failures. Microservices are expected to gracefully handle the
failure of a downstream microservice in their call path. This does add additional code
complexity but makes the application resilient and robust. It is a common practice to
test the application’s ability to handle such failures through automated testing. For
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Fig. 2.1 The Jaeger trace of compose-post request of the social networking application. The leftmost
rectangular block shows that the client’s request arrives at the front end (nginx-web-server), which
calls 4 other microservices (media-service, user-service, text-service and unique-id-service) in parallel.
The middle and the right rectangular blocks show downstream calls at deeper levels in the call graph.

Fig. 2.2 The Jaeger trace of read-usertimeline request of the social networking application.

example, Netflix’s chaos monkey [3] randomly terminates microservices in production
to ensure that each microservice is implemented to handle such failures. For efficient
debugging, distributed monitoring and logging are usually required and are part of
most microservices applications [113].

2.1.2 Benchmarking Applications
Throughout our thesis, we use various open-sourced benchmarking applications to evaluate
our hypothesis [73, 181]. We briefly discuss the architecture and functionalities of these
applications here.

• Social Network: The social network application has 28 microservices that imple-
ment an end-to-end broadcast-style social networking application. The application
consists of Nginx as a frontend, Memcached and Redis for caching, MongoDB for
persistence storage, and Thrift-based microservices that implement the application’s
logic. Currently, it supports three request types: a) compose-post, where a user creates
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Parameter Microservice (type) Description
worker_processes frontend-nginx (Nginx) The number of Nginx worker pro-

cesses
maxmemory-policy social-graph-redis (Redis) The policy Redis uses to remove el-

ements when memory usage reaches
the limit.

io_threadpool_size social-graph-service (Thrift) The size of the IO thread pool in a
Thrift server.

memory_limit post-storage-memc (Memcached) Memory limit for object storage.
serviceExecutor url-shorten-mongodb (MongoDB) Determines the threading and execu-

tion model.

Table 2.1 A subset of parameters of the social networking application.

and uploads a post embedded with text, media, links, and tags to other users b) read-
hometimeline, where a user reads their own timeline, and c) read-usertimeline, where
a user can read another user’s timeline.

The call graphs of the compose-post and the read-usertimeline requests in the form of
Jaeger traces are as given in Figure 2.1 and Figure 2.2, respectively. While we do not
go into the details of the functionality of each microservice, the call graphs show the
complex interaction between services, even for a benchmarking application.

Table 2.1 shows a subset of social networking application’s parameters along with the
specific microservice they belong to, the type of the microservices and the description
of the parameter.

• Media Microservices The media microservices application consists of 31 microser-
vices and implements a movie review system. The constituent microservices are similar
to the ones in the social networking application. The application supports different
request types, including a) compose-review, where a user reviews a particular movie,
b) read-plot, where user reads the plot of the movie, c) read-cast-info, where the user
reads the cast of the movie, and d) read-review, for reading an existing review.

• Hotel Reservation The hotel reservation application consists of 18 microservices
that together implement an end-to-end hotel reservation system. The front end and
the logic microservices are implemented in Go. It uses Memcached for caching and
MongoDB for persistent storage. The application supports different request types
a) search-hotel, to search a hotel in the user-specified date range and location, b)
recommend, to recommend hotels based on distance, rate, or price and c) reserve, to
reserve a hotel for the specified date range.
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Fig. 2.3 The microservices graphs in three large cloud providers and the social networking applica-
tion [73]. The points on the circumference correspond to microservices, and the lines between them
represent interactions.

• Train Ticket The train ticket application is a train ticket booking system consisting of
41 microservices. In addition to the microservices that are part of the social networking
application, this application includes a MySQL microservice. The application supports
different request types but the ones we use in our experiments are a) search, to search
all the trains between user-specified source and destination and b) book, to book a
particular train taking into account user’s preferences like food type, seat type, etc.

2.1.3 Large-Scale Applications
Although representative of real-world applications, the benchmarking applications discussed
in the previous section fall short in scale. The real-world applications implemented using
microservices architecture consist of 100s to 1000s of microservices [112, 73, 179] as shown
in Figure 2.3. Uber’s backend, for example, has around 4000 microservices interacting with
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each other via RPCs [179]. With the increase in scale, the challenges of the microservices
architecture are harder to solve manually or using traditional techniques, necessitating
learning-based techniques [112]. Moreover, a large amount of data is collected through
distributed tracing and logging, aiding data-driven approaches to solve the challenges of
microservices architecture. However, the techniques used to solve the challenges must not
affect the performance if they are on the critical path. Considering all these aspects, we
explore various techniques to deal with the challenges of configuration tuning and bottleneck
detection and mitigation of large-scale applications.

2.2 Related Work
In this section, we discuss some of the recent works related to microservices architecture and
their challenges. First, we discuss works on benchmarking and real-world microservices ap-
plications, followed by configuration tuning, ending with bottleneck detection and mitigation.
In each separate chapter, we delve into more specific related works.

2.2.1 Benchmarking and Real-World Applications

In this section, we discuss DeathStarBench [73], a benchmarking suite and Luo et al. [112],
a work that characterizes microservices applications in Alibaba clusters.

Gan et al. [73] introduce the DeathStarBench benchmarking suite consisting of applica-
tions implemented using the microservices architecture. The applications are representative
of large-scale end-to-end real-world applications and are built using popular open-sourced
technologies. The authors use the suite to explore the implications of microservices appli-
cations across the system stack. Specifically, the authors study microservices’ architectural
characteristics, their implications on operating systems and networking, and their unique
challenges in cluster management. In addition, they study the effect of scale by deploying one
of the benchmarking applications in the real world and scaling it to hundreds of users. The
study reveals various characteristics of microservices applications including a) the latency re-
quirement for each microservice is stricter to provide QoS requiring predictable performance,
b) the network cost is high due to RPCs, c) network acceleration improves latency drastically,
d) back-pressure effects and cascading QoS violations make the performance unpredictable
and e) performance management is harder at scale as minor mismanagement can degrade
end-to-end latency significantly.

Luo et al. [112] characterize Alibaba’s production services implemented using the mi-
croservices architecture. The traces used for analysis consists of data for around 20000
microservices over a 7-day period. The authors specifically characterize the microservice
dependency and runtime performance. The critical observations from the authors are a)
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microservice call graphs are significantly different from the traditional DAGs, b) there is a
strong dependency between microservices which can be exploited to optimize the design,
and c) stochastic models can simulate dynamic microservice call graphs. Other than these
critical observations, some of the other important results of the analysis are a) the size of
microservices call graphs are heavy-tailed, b) the number of microservices in a call graph
follows a Burr distribution, c) for larger call graphs, about 50% of the microservices is Mem-
cached, d) the largest call graph can consist of even hundreds to thousands of microservices,
e) about 5% of the microservices are shared by 90% of the online services, f) microservices
can form highly dynamic call dependencies in runtime, and g) the run time performance
highly correlates with CPU utilization but not memory.

2.2.2 Configuration Tuning

In this section, we discuss µTune [149], KEA [182], and Twine [156], which are frameworks
for tuning applications.

Sriraman et al. [149] introduce µTune, which consists of a novel framework to abstract
the threading model from the users and a load adaptation system that tunes the threading
models depending on the load to reduce latency. The microservice applications considered
are slightly less representative than the real-world applications as they only consist of a front
end, a mid-tier, and a number of leaf nodes (workers). The authors provide a taxonomy for
threading models on the dimensions of communication (synchronous vs. asynchronous),
RPC processing (in-line vs. dispatch), and RPC reception (block vs. poll), leading to 8
different threading models. During the training phase, tail latency for different threading
models and thread pool sizes are collected at various loads. Using this data, a piecewise
linear model is constructed, which is used during runtime to switch the threading model to
maximize performance.

KEA [182] is both a methodology and a data-driven system to tune cluster-wide configu-
rations of a big-data infrastructure at Microsoft to reduce operational costs. The methodology
involves three phases. The first phase involves a collaboration between the data scientists and
the system specialists to define the problem, scale, objectives and constraints. The second
phase involves developing machine learning models to capture the relationship between
performance metrics and configurations and find the optimal configurations. The third phase
involves testing the optimal configurations on a subset of the cluster before deploying it
across the cluster. Additionally, the framework provides three different tuning approaches -
a) Observational tuning, b) Hypothetical tuning and c) Experimental tuning, together which
can cover a variety of scenarios. Observational tuning corresponds to configuration scenarios
where the data collected from past cluster operations is sufficient to predict the performance
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of new configurations. Hypothetical tuning also uses data collected from past cluster opera-
tions to predict configurations for future machines helping in the planning. Experimental
tuning is used when additional experiments are needed to find the optimal configurations
making it expensive compared to the other two. In summary, KEA uses domain knowledge
and data science to continuously tune Microsoft’s cluster configurations, saving tens of
millions of dollars per year.

Twine [156] is Facebook’s cluster management system that manages all the shared
infrastructure at Facebook. Among various other features, Twine provides workload-specific
customizations like tuning hardware and OS settings to improve performance and custom
event-based handling of container life cycle management. The applications are mapped to
hosts with specific settings that optimize their performance through an abstraction called host
profile (17 in total). A host profile corresponds to specific values for kernel versions, sysctls
(e.g., hugepages and kernel scheduler settings), cgroupv2 (e.g., CPU controller), storage
(e.g., XFS or brtfs), NIC settings, CPU Turbo Boost, and hardware prefetch. The machines
allocated to an application are dynamically reconfigured in accordance with the host profile
before the workload is scheduled thus optimizing the performance.

2.2.3 Bottleneck Detection and Mitigation
FIRM [129] presents a fine-grained resource management framework for microservices
applications. FIRM provides the following insights which shape the solutions a) the critical
paths in the microservices applications are dynamic b) a microservice with high service time
need not be the source of performance degradation and c) mitigation policies vary with user
load and the resource in contention. Using these insights, FIRM first detects the bottlenecks
to get a set of candidates for autoscaling. It performs critical path analysis to reduce the
number of microservices considered candidates for bottlenecks, thereby reducing the number
of parameters tuned. Following this, an SVM model classifies the microservices as potential
bottlenecks and non-bottlenecks. For the potential bottlenecks, FIRM uses reinforcement
learning to tune resource limits for CPU, memory, LLC, I/O and network (starting state
corresponds to overprovisioned state). FIRM performs better than Kubernetes’s autoscaling
model and AIMD (rule-based auto-scaling technique). Transfer learning is shown to be
effective. Thus, training time, which is a cost over black-box optimization techniques, is
avoided.



Chapter 3

Pre-deployment Configuration Tuning

Microservice architecture is an architectural style for designing applications that supports
a collection of fine-grained and loosely-coupled services, called microservices, enabling
independent development and deployment. An undesirable complexity that results from this
style is the large state space of possibly inter-dependent configuration parameters (of the
constituent microservices) which have to be tuned to improve application performance.

This chapter investigates optimization algorithms to address the problem of configu-
ration tuning of microservices applications. To address the critical issue of large state
space, practical dimensionality reduction strategies are developed based on available system
characteristics.

3.1 Introduction
The emerging microservice architecture allows applications to be decomposed into different,
interacting modules, each of which can then be independently managed for agility, scala-
bility, and fault isolation [73, 149]. Each module or microservice typically implements a
single business capability with inter-microservice communication enabled via Application
Programming Interfaces (APIs). Applications deployed using the microservice architecture
thus enable flexible software development.

The microservice architecture is especially well suited for designing online, customer-
facing applications where performance and availability are paramount [61, 62]. For example,
an online application can be deployed as front-end microservices (e.g., Nginx), a set of
microservices that implement the logic of the application each of which can have their own
database (e.g., MongoDB) and caching (e.g., Memcached) microservices. Consequently, an
application can have numerous microservices. Given the benefits of the modular architecture,
microservices architecture is widely replacing existing deployments implemented using
monolithic or multi-tier architectures at Amazon, Netflix, and Twitter [73].
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Despite the benefits of the microservice architecture, a specific challenge that this dis-
tributed deployment poses is that of tuning the configuration parameters of the constituent
microservices. A change in configuration parameters can substantially impact application
performance, motivating our investigation of configuration tuning. For example, sweeping
over the valid range of values for the worker_process parameter of the nginx [2] microservice
in the social networking application [73] (while keeping the rest of the parameters at default)
can provide up to 13% improvement in latency over the default configuration. However, joint
optimization of all the application parameters can provide 46% latency improvement over
the default configuration (see Section 5.1.4). On the other hand, setting a sub-optimal (but
still valid) value for the worker_process parameter of the nginx while setting the rest of the
parameters to the optimal values can deteriorate the performance by up to 100× compared
to the default configuration. Tuning the parameters of monolithic or N-tier applications
for maximizing performance is already a difficult task [183, 166, 165, 159, 114, 149] (see
Section 3.2). With microservice applications, configuration tuning is especially complicated
owing to the following challenges:

• Very large configuration space. Microservices applications have hundreds to thousands of
interacting microservices that each have several parameters that can be configured [112].
Frameworks that aid microservices development, such as Apache Thrift [33] and gRPC [90],
introduce additional parameters that impact application performance. These parameters can
take values that are discrete, continuous, or categorical, complicating attempts to optimize
their values.

• Inter-dependent parameters. The parameter setting of a microservice can influence the
optimal value of a different parameter of the same microservice. As a result, the numerous
parameters of a given microservice cannot be independently optimized (see Section 5.1.4).
For example, for MongoDB, a low value of the cache size parameter can amplify the
number of concurrent read transactions, making it difficult to independently tune the latter
parameter [17].

• Dependency between parameters of different microservices. The dependency between
parameter values extends beyond a single microservice; parameters of upstream services
are often dependent on the parameter settings of downstream services [165]. For example,
the thread pool size of a microservice may dictate how many concurrent requests are sent
to the downstream microservice.

• Interference among colocated microservices. Microservices, typically deployed as con-
tainers, can be colocated on the same physical host. Due to potential resource contention,
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Fig. 3.1 Comparison of 95th percentile of latency for the social networking application [73] under
(i) default configuration values (Default), (ii) the configuration used by DeathStarBench benchmark
developers [5] (DC), and the configuration found by the best optimization technique among those we
explored (iii) with dimensionality reduction (considering only a subset of microservices for tuning)
and (iv) without any reduction (tuning all microservices). The right y-axis shows the number of
microservices tuned for (iii) and (iv).

the resource configuration of a microservice can impact the performance of other colocated
microservices. For example, the cache size of two colocated caching microservices should
not be set independently as they share the host’s memory resources.

• Non-linear relationship between microservices parameters and performance. Application
performance need not be monotonically or linearly dependent on parameter values, making
it difficult to determine optimal configuration parameter settings. The thread pool size
parameter is a classic example whereby a low value results in under-utilization of the CPU
and a very high value results in contention for network sockets or CPU resources [149].

There is little prior work on the specific problem of configuration tuning of microservices,
and that work relies on empirically exploring the configuration setting of only specific
parameters of just stateless microservices [149]. There are, however, prior works that focus
on optimizing the configuration of individual services [56, 159], but as explained above, the
dependencies between the parameters of microservices makes it infeasible to optimize them
in isolation.

This chapter explores the problem of configuration tuning of microservices applications.
To address the problem of inter-dependent parameters, we consider joint optimization of
the parameter space. We conduct an extensive experimental investigation of six black-box
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optimization algorithms with the goal of minimizing the tail latency of a given microservice
application deployment. As shown in Figure 3.1, the best optimization algorithm can signifi-
cantly improve application tail latency (95th percentile), by as much 46% and 43%, compared
to the default configuration setting and the suggested configuration in prior work [73], re-
spectively. We also find that combining different algorithms can result in efficient solutions
that quickly (with few exploration points) explore the state space and provide significant
latency improvements.

To address the key challenge of a large configuration space when jointly tuning microser-
vices applications, we investigate various dimensionality reduction approaches to identify
a subset of microservices that are most likely to impact end-to-end application latency. As
illustrated by the two rightmost bars in Figure 3.1, by employing dimensionality reduction,
we can achieve significant improvement in tail latency while only having to tune about
18% of all microservices. In fact, within a given budget on the number of iterations of the
optimization algorithm, optimizing with dimensionality reduction can further improve tail
latency (by about 6.5%) compared to when optimizing without any dimensionality reduction
since the search space is reduced, thereby aiding the optimization.

Our investigation of different algorithms reveals that the optimal choice is application-
dependent. While the hybrid algorithm we devise performs best for the social networking and
the train ticket applications, Bayesian optimization performs best for media microservices
application, in terms of tail latency reduction. In terms of the time taken to run the algorithm,
dynamically dimensioned search (DDS) performs the best.

This work makes the following contributions:

• We formulate configuration tuning of microservices application as a joint optimization
problem, making it amenable to optimization algorithms. Contrary to serial tuning, this
provides an opportunity for the optimization algorithms to learn the dependencies among
parameters of the same microservices and across microservices.

• We implement a framework [7] to experimentally explore and evaluate the configuration
space of parameters for microservices. The framework is fully automated and can be
integrated with any optimization technique.

• We implement six different representative optimization algorithms using open-sourced
libraries and compare their efficacy in choosing the best configuration with respect to
minimizing the application tail latency. To assess the optimization algorithms’ applicability
in practice, we also analyze their convergence and overhead.
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• Based on our analysis of different algorithms, we design and evaluate an efficient hybrid
algorithm that combines the strengths of different algorithms. In particular, the algorithm
quickly explores the state space using a heuristic-based search and then uses the results of
this search to initialize a model-based search algorithm.

• For scalability, we investigate different approaches, including critical path and variability
tracking, to reduce the overhead of optimization by limiting the set of microservices whose
parameters will be configured. We analyze the ability of these different techniques to
capture the most important parameters that impact application tail latency.

• We use functional analysis of variance (fANOVA) [88] to find the most important param-
eters and analyze the values assigned to them by different optimization algorithms. We
also examine the change in service time of individual microservices to assess the impact of
optimization on different request types in the workload.

3.2 Background and Prior Work
Microservice architecture is a style of architecture where the application is implemented as a
set of loosely coupled services, called microservices. This shift in the design of distributed
applications requires revisiting some of the problems that have been addressed for monolithic
and N-tier architectures. Resource management [129] and bottleneck mitigation [74] for
microservices applications are some of the problems that have garnered significant attention
from the research and development community. Prior work on performance improvement
of microservices has primarily focused on resource allocation [74, 169, 129, 77]; We take a
different approach to improving the performance of distributed applications implemented
using a microservices architecture. In particular, we tackle the problem of tuning the
parameters of microservices to improve the performance metric of interest (e.g., tail latency
or throughput).

The general problem of tuning parameters of computer systems has gained significant
attention [56, 159, 114]. However, these works do not focus on the specific problem of
microservices configuration where several, inter-dependent parameter configurations have
to be tuned. The one extensive prior work on configuration tuning of microservices that we
are aware of is by Sriraman et al. [149]. In this work, the authors explore the tuning of a
small subset of microservices parameters, limited to thread pool size and threading model.
However, the state space of configuration parameters for microservices is very large, as
discussed in Section 5.1.1, and hence a more comprehensive investigation of parameters is
required for the performance optimization of microservices applications.
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A naive approach to address the large state space of configurations for microservices
applications is to tune one microservice at a time. While this approach significantly reduces
the state space dimensionality for configuration tuning, it does proportionally increase the
tuning effort. Further, this serial tuning approach cannot capture the complex relationship
between different parameters and the cascading effects between different microservices [74,
50].

Based on the above discussion, we argue that there is a need to investigate joint opti-
mization of the microservices’ parameters. The joint optimization is needed in order to
capture the impact of multiple parameters of one microservice on its performance as well
as the impact of a microservice’s parameters on the performance of other microservices.
Further, mechanisms are needed to reduce the configuration state space, given the numerous
parameters and microservices employed by modern applications.

We now briefly discuss prior works related to the general problem of configuration tuning
in systems before we formalize our specific problem in Section 3.3.1.

Application configuration tuning. There has been considerable research in parameter
tuning for individual applications, such as Apache web server [165], Memcached [161],
database [159] and storage systems [56, 182], etc. OtterTune [159] is a tool that tunes
parameters of the database management system (DBMS) using ML. OtterTune uses the
learning experience of tuning other DBMS deployments to tune new ones, thereby reducing
the time and resources required to tune the DBMS configuration of a new application. Cao et
al. [56] use different black-box optimization algorithms to tune the parameters of storage
systems and compare the performance of these algorithms. Wang et al. [165] study the
performance implications of tuning thread pool and data connection pool size for an N-tier
application and employ a queueing model to assign near-optimal values for the software
configuration. The authors emphasize the dependency between parameters of different tiers,
which is observed in microservices applications as well. While the above works can be
used to tune individual microservices in isolation, the dependencies between microservices
necessitates global optimization across microservices.

SmartConf [166] is a control-theoretic framework that automatically sets and dynamically
adjusts parameters of software systems to optimize performance metrics while meeting the
operating constraints set by the user. However, SmartConf is only applicable to parameters
that have a linear relationship with performance; this is not necessarily the case for parameters
of microservices [149]. BestConfig [183] uses sampling and search-based methods to
tune the parameters of software systems. However, the sampling effort required increases
exponentially with the number of parameters, suggesting that BestConfig is infeasible for
microservices applications with a large configuration space. Fekry et al. [68] concentrate on
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dynamically tuning configurations of data analytics frameworks for varying workloads and
environments. While online tuning is an interesting research direction, it significantly limits
the number of parameters available for (online) tuning. Alabed et al. [38] tune 10 parameters
of RocksDB by optimizing multiple objectives using Bayesian optimization. The additional
overhead of optimizing multiple objectives in place of one is addressed by reducing the
dimensions of each optimization task. However, finding the low-level metrics and reducing
the dimensionality of each optimization task requires expert knowledge of the system being
tuned which is not feasible for microservices architecture due to the variety of microservices
that are part of each application.

Resource allocation tuning. Bilal et al. [51] perform an exhaustive comparison of ex-
isting black-box techniques for the problem of finding the best cloud configuration that
minimizes the execution time or cost. Vanir [50] optimizes the cloud configuration for
analytics clusters using Mondrian forest-based performance model and transfer learning. OP-
TIMUSCLOUD [114] jointly optimizes VM configurations and database configurations for
cloud-deployed database systems by training a performance prediction model. Kaminski et
al. [94] employ black-box optimization algorithms to find cost-effective resource assignments
while meeting performance targets for a multi-tenant, container-based cloud environment.
CherryPick [39] uses Bayesian Optimization (BO) to build a performance model for Big
Data systems, which is then used to find the best cloud configuration for these systems.
Mostofi et al. [120] tune CPU allocations of a simple benchmarking application with three
microservices. The configuration search space is too small compared to our work.

While some of the optimization algorithms explored in our evaluation are similar to the
ones employed by the above works, we note that our focus is on tuning the parameters of
the numerous microservices that make up an application, as opposed to only focusing on a
handful of resource allocation parameters, such as number of CPUs, memory capacity, etc.

Performance management for microservices. There are several recent orthogonal works
that aim to improve the performance of microservices applications via approaches other than
configuration tuning. Sinan [178] is an ML-based CPU resource manager for microservices
applications that takes into account short-term and long-term SLO conformance. Sage [71] is
an unsupervised ML-based root cause analysis system that detects performance bottlenecks
in microservices applications and then adjusts the allocation of the bottleneck resource at
the identified microservice(s) to improve performance. FIRM [129] leverages tracing and
telemetry data (from microservices) to find the critical path for an application and uses
ML to detect and mitigate the bottleneck microservices. ATOM [77] leverages a layered
queueing network model to assess the impact of horizontal (CPU) and vertical scaling on a
given microservice; the scaling rules can then be determined for the application to optimize
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the cost of deployment and application throughput. Similarly, HyScale [169] explores the
combination of horizontal (CPU, memory, and network) and vertical scaling to improve the
resource utilization of stateless microservices applications.

Reducing the configuration space. An orthogonal research direction is identifying con-
figuration parameters that have the most effect on performance, thereby alleviating the
configuration tuning effort by reducing the parameter search space.

Kanellis et al. [95] employ learning-based techniques to find the most important param-
eters of database systems that impact performance. Carver [55] employs Latin Hypercube
Sampling to explore the effect of different parameters on storage system performance and
uses the variance in performance caused by a parameter as an indicator of the parameter’s
importance. As discussed in Section 5.1.4, focusing on microservices on the critical path
is a more effective approach. We reduce the dimensions by finding which of the microser-
vices affect the performance the most and only tune such microservices as discussed in
Section 5.1.4.

3.3 Problem Formulation and System Design
In this section, we formulate the microservices configuration setting problem as an optimiza-
tion problem. We then describe our system design for the automated framework (which
we have made publicly available [7]) that aids our experimental evaluation (presented in
Section 5.1.4).

3.3.1 Microservices configuration setting problem

Let f (c) denote the objective function (or performance metric) for the microservices applica-
tion under the configuration c; here, c is the (potentially large) vector of parameter settings
for all tunable parameters of all microservices. Note that a parameter refers to a configurable
option and a configuration is a combination of parameter values. Let C denote the set of
all configurations, i.e., all feasible values that vector c can take. Finally, let copt ∈C denote
the configuration that minimizes the performance metric, f (). Thus, copt = argminc∈C f (c).
We could consider metrics that need to be maximized by minimizing the negative of the
objective function. Our problem statement is to find copt or a near-optimal configuration.
We focus on the realistic case where no assumptions can be made on the structure of f () or
on the availability of offline training data. We further assert, for practical purposes, that the
(near-)optimal configuration should be determined in a reasonable amount of time.

While f () can represent any metric of interest, including combinations of metrics, we
consider the 95th percentile of end-to-end application latency to be our metric, f (). We note
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that customer-facing applications often employ such tail latency metrics to assess application
performance [62, 61].

Given the dependencies between parameters and the possible non-linear relationship
between performance and parameter values (as described in Section 5.1.1), it is unlikely that
f () can be determined or inferred accurately. Thus, classic convex optimization techniques
cannot be readily applied to determine copt . However, for a given c, the value of f (c) can be
observed or measured by setting the parameter values in c for the microservices and running
an experiment. This suggests that black-box optimization techniques, that iteratively observe
the value of f () at a given c and determine the next configuration value c′ to explore, can be
applied to find copt or near-optimal c values.

3.3.2 Automated framework to aid optimization

Unlike prior works [56, 51] that run optimization algorithms over readily available datasets,
we evaluate the value of the objective function, f (), by running an experiment. To streamline
the iterative exploration of configurations (for determining copt), we thus require a robust
framework that can automatically: (i) configure the parameters of the microservices selected
by the dimensionality reduction technique and run the application with these parameter
settings, (ii) collect the required metrics, and (iii) run the optimization algorithm to obtain
the next configuration to experiment with.

Figure 3.2 illustrates the design of our automated framework that we use to conduct
our experiments. The application deployment file has the information necessary to create
the docker-compose files, viz., the list of microservices, their images, the host details,
environment variables, etc. The parameters file contains the list of parameters being tuned
and their range. The size of this list depends on the dimensionality reduction method being
employed. The controller passes the value of the measured objective function, f (c(i)), of
the current iteration, i, and queries the optimizer for the next configuration setting, c(i+1).

The optimizer, in its first iteration, queries the dimensionality reduction module to
obtain a subset of the microservices parameters that will be subject to optimization. The
dimensionality reduction module uses the application deployment file, parameters file, and
the request traces to pass a reduced list of parameters to the optimizer. The dimensionality
reduction techniques are discussed in Section 3.4.2. The optimizer then generates, via
the optimization algorithm, the next configuration setting, c(i+1), for the reduced list of
parameters.

Using the details in the application deployment file and the c(i+1) configuration passed
by the optimizer, the controller generates docker-compose files on the fly with the necessary
network settings and mounts. The application is then deployed on the servers using these
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Fig. 3.2 Illustration of our solution framework. f () is the objective function or performance metric
of interest and c(i) is the configuration setting for iteration i. The optimizer takes in the observed
objective function value for a configuration, f (c(i)), and outputs the next configuration to employ,
c(i+1). The dimensionality reduction module trims the configuration vector size to speed up the
optimization process. The controller interfaces with the application and invokes the execution based
on the required configuration.

docker-compose files and the client sends the workload to the application. The request
traces are collected by a tracing framework and the latency metrics are calculated by the
client. These metrics are passed to the controller which then calculates the objective function,
f (c(i+1)), and repeats the process iteratively until a good enough configuration is found
or until an exploration time limit is reached. Our framework supports any combination of
average, median, or tail latency for the objective function.

The framework currently supports automatic configuration management for the most
widely used microservices [100]: Memcached, Redis, MongoDB, MySQL, Nginx, and
microservices implemented using the thrift framework. The parameters of some of these
microservices can be modified by creating a configuration file (e.g., for Nginx) whereas
others expect them as command-line arguments with varying syntax. The user can be agnostic
to these intricacies and treat all parameters similarly. The framework can be employed for
any microservices application consisting of the supported microservices by including the
application deployment file for that application. Optimization algorithms can be added by
inheriting the Optimizer class and implementing its methods.
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3.4 Evaluation
In this section, we first discuss our experimental setup and methodology and then present
our experimental results. Our evaluation goal is to (i) investigate the efficacy of various
optimization algorithms with respect to their running time and their ability to improve tail
latency by configuration tuning; and (ii) investigate dimensionality reduction techniques that
can speed up the optimization algorithms in practice.

3.4.1 Experimental setup
We use a cluster with four servers, each with 24 (hyper)cores, 40 GB of memory, and 250GB
of disk space. We deploy the microservices of the application on these servers based on
their functionality: one hosts back-end microservices as is the practice in industry [112], one
server hosts front-end microservices, one hosts the microservices that implement the logic,
and one server is dedicated for monitoring the microservices and the application performance.
We restrict monitoring services, Jaeger [9] with Elasticsearch [6] back-end, to a different
server to avoid interference with the application. docker-compose is used to deploy the
application and overlay network connects the microservices across the servers.

Applications. We employ the social networking and media microservices applications from
the DeathStarBench benchmark suite [73] and train ticket [181] application to evaluate the
efficacy of different black-box optimization algorithms.

The social networking application has 28 microservices that together implement several
features of real-world social networking applications. The constituent microservices are
Nginx, Memcached, MongoDB, Redis, as well as microservices that implement the logic
of the application. The application workload consists of 10% requests that create a post,
30% requests that read the timeline of other users, and 60% requests that read the user’s own
timeline.

The media microservices application implements a movie review system and consists
of 31 microservices. The constituent microservices are similar to the ones in the social
networking application. The workload consists of 25% requests that add a movie review,
70% requests that read a movie review, and 5% requests that read the plot of the movie.

The train ticket application is a train ticket booking system implemented using 41 mi-
croservices. In addition to the microservices that are part of the social networking application,
this application also uses MySQL microservice. The application workload consists of 50%
of requests that search for a train between two stations, and 50% of requests that reserve a
train ticket.

We change the type of server for social networking and media microservices applica-
tions to TNonblockingServer. The Apache Thrift C++ TNonblockingServer provides better
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performance and exposes numerous settings for the developer to customize the server [33].
We also make modifications to change the thread pool size dynamically based on the value
suggested by the optimizer for each iteration.

3.4.2 Evaluation methodology
For evaluation, we consider the 95th percentile of latency as the performance metric; other
latency metrics can be readily used as well. For each microservice, we select at most
five parameters to tune; we refer to product documentation [2, 16, 22, 14, 33] to identify
the performance-impacting parameters. Our framework supports parameters that can take
continuous (e.g., factor parameter of memcached), discrete (e.g., number of processes in
Nginx), or categorical values (e.g., maxmemory-policy in Redis). The range of allowed
values for each parameter is decided based on product documentation (e.g., internal cache
size of mongoDB) or the limits of the hardware (e.g., number of threads in memcached).

We report results averaged across multiple experimental runs and provide error bars
where appropriate. Each run lasts for 20 minutes, with the first few minutes (5 minutes for
social networking and media microservices and 10 minutes for train ticket) considered as
warm up until the cache hit rate stabilizes. Performance metrics are collected after the warm
up period.

Black-box optimization algorithms

We consider six existing representative optimization algorithms in our evaluation, and then
propose a seventh hybrid algorithm based on our analysis of the existing six algorithms.
The first 2 are representative of heuristic-based probabilistic algorithms, the next 2 are
evolutionary algorithms inspired by population-based biological evolution, and the next 2 are
sequential model-based optimization algorithms that approximate the objective function with
a cheaper, surrogate function [47] to aid optimization. We use skopt [32], Hyperopt [48],
and Nevergrad [131] libraries to implement the algorithms. We also compare the results of
these algorithms with the best configuration obtained by performing a random search of the
configuration space. Note that we also tried tuning one microservice at a time (as opposed to
a joint tuning), but the results are inferior and are so omitted.
Simulated Annealing (SA) [110] exploits the neighbourhood points based on the value
of the objective function at these points, with the degree of exploration determined by a
time-varying parameter that decreases with each iteration (annealing). Since SA is known to
be better at global optimization than the hill climbing algorithm [110], we do not evaluate
the latter.
Dynamically Dimensioned Search (DDS) starts with an initial configuration and perturbs
the values of the parameters of the configuration based on a perturbation factor [158]. With
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each iteration, the probability of each parameter being included in the optimization reduces
uniformly, thereby reducing the search space.
Particle Swarm Optimization (PSO) [110] works by moving a population (called swarm)
of candidate solutions (called particles) around the search space depending on the particle’s
best-known position and the global best position.
Genetic Algorithms (GA) [110] mimic natural selection by first selecting a subset of candidate
solutions based on the objective function value and then randomly changing the configurations
of some parameters (mutation) and combining configurations of the candidates (crossover)
to generate new candidates.
Bayesian Optimization (BO) starts with a prior distribution of the search space guided
by the surrogate; we experiment with the popular Gaussian Process (GP) [47], Gradient
Boosted Regression Trees (GBRT) [51], and Random Forests (RF) [51] surrogate models.
The posterior distribution is updated at each step of exploration using Bayesian method.
Tree-structured Parzen Estimator (TPE) is similar to BO, but models the likelihood and
prior instead of the posterior [47].
Hybrid algorithm is a new algorithm that we construct by combining the strengths of BO
and DDS. BO models the relationship between performance and the parameters to efficiently
search for the optimal configuration with a convergence rate that is dependent on the initial
samples [38]. On the other hand, DDS is a computationally efficient heuristic-based search
algorithm that performs well (See Section 5.1.4). Since DDS is not model-based, it makes
no attempt to learn about the parameter space. With hybrid, we combine the light-weight
searching feature of DDS with the model-based searching feature of BO. Specifically, the
DDS algorithm is run for a fixed number of iterations and the resulting best configurations
are used as initial samples for the Bayesian algorithm with the popular Gaussian Process
as the surrogate model [39, 50]. By contrast, when not using hybrid, the initial samples for
Bayesian are (by default) randomly generated.

Dimensionality reduction strategies

If an application has m microservices each with pi parameters (for i = 1,2,⋯,m), then
the number of dimensions in a configuration vector c is n =∑m

i=1 pi. For the purpose of
illustration, if each parameter can take v different values, then the number of possible
configurations is ∣C∣ = vn. Clearly, the search space of configurations grows exponentially
with the number of microservices. To reduce the search space, we thus consider strategies
that allow us to focus our configuration tuning effort on only a subset of the microservices.
Another advantage of dimensionality reduction is that several optimization algorithms, such
as Bayesian Optimization (BO), do not work well in high dimensions (number of tunable
parameters, in our case) [119]. We note that our dimensionality reduction strategies have a
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different goal than those used in the machine learning community since our focus is on using
system characteristics to reduce dimensions in a practical manner. For example, Principal
Component Analysis (PCA) [118] can reduce the configuration space dimensions but would
make it difficult to reconstruct the configuration value after optimization.

1. Critical path. In the call graph of a request, the critical path is the path formed by
microservices that determine the latency of the request. Tuning the parameters of the
microservices that fall on the critical path of a request is important as any performance
improvements in these microservices will reduce the end-to-end latency of the request.
Algorithm 1 provides an overview of our critical path determination algorithm. The
algorithm takes the request traces as input T and outputs a list of microservices that form
the critical path of each trace. In summary, the algorithm traverses the call graph of a
request to find all the microservices on the critical path that have non-negligible latency
(at least 1ms).

We rely on the service time (or span) measurements provided by Jaeger for each microser-
vice to determine the critical path. Using our algorithm, we identify microservices present
on the critical path of most of the request types for all applications.

Algorithm 1. Find microservices along the Critical Path.

1: Input: Request traces, T .
2: Output: List of microservices along the Critical Path.
3: criticalPathAll ← ∅
4: for t ∈ T do
5: currentCriticalPath ← getCriticalPath(t.root)
6: append(criticalPathAll,currentCriticalPath)

7: procedure GETCRITICALPATH(node)
8: criticalPath ← ∅
9: if node.children is NULL then

10: lastChild = nextChild(node)
11: getCriticalPath(lastChild)
12: node.duration = updateDuration(node)

13: if node.duration > 1ms then
14: append(criticalPath, node)

end

2. Bottlenecks. FIRM [129] uses a Support Vector Machine (SVM) to detect microservices
that could be potential bottlenecks for an application.
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(a) Social networking application.

(b) Media microservices application.

(c) Train ticket application.
Fig. 3.3 Evaluation of different dimensionality reduction techniques with respect to improvement in
latency over the default configuration under different optimization algorithms. Error bars indicate the
standard deviation around the reported mean over 3 runs. The total optimization time is the time taken
by the algorithm across the 15 iterations (excluding the time to run the application with the required
configurations).

We train an SVM model using the publicly available tracing data [128] for the social
networking, media microservices, and the train ticket applications. We use this model to
predict potential bottlenecks in all applications and tune only these.

3. Performance variance. Reducing the source of performance variance can improve the
system performance [61, 151]. Accordingly, we consider configuration tuning only for



30 Pre-deployment Configuration Tuning

microservices that have a high service time coefficient of variation (above 0.5 in our
experiments).

4. Performance variance along the critical path. To combine the strengths of different
dimensionality reduction techniques, we consider the approach of first determining the
critical path (via Algorithm 1) and then selecting the top five microservices on the critical
path that have the highest variance in service time.

3.4.3 Experimental results
In practice, the optimization algorithms cannot be run indefinitely. Unless otherwise specified,
we limit the number of configurations to be explored for each optimization algorithm to 15.
We note that running each iteration of the algorithm involves bringing up the application,
applying the configuration, and running the workload, which together takes about half an
hour. By contrast, the time taken by an optimization algorithm to suggest a new configuration
is typically in the order of seconds. Thus, a budget on the optimization time as a stopping
criteria is not as practical as the number of iterations of the algorithm. For initialization, the
optimization algorithms, except Hybrid, start with a random configuration. For the evaluation
to be fair, we initialize all the algorithms with the same random samples. Note that (re)setting
the configuration parameters between iterations does incur some overhead and may require
restarting some microservices; during this time, the application may be momentarily offline.
We acknowledge that this can be concerning for production deployments where application
downtime is not tolerated. However, in a production deployment, the reconfiguration step can
be carried out during planned maintenance or upgrade windows to avoid additional disruption
to the application [20]. We defer online configuration tuning of microservices to future work.

subsubsectionEfficacy of dimensionality reduction strategies Figure 3.3 shows the per-
centage improvement in tail (95th percentile) latency of all applications under different
dimensionality reduction techniques, compared to the tail latency when using the default
configuration for all parameters. For ease of illustration, we show results for three specific
optimization algorithms. Note that comparison across optimization algorithms will be dis-
cussed in the next subsection and is not the focus here. Error bars in the figures indicate the
standard deviation around the reported mean results.

In Figure 3.3a, we see that tuning all 28 microservices of the social networking application
provides about 39–43% improvement in tail latency. Tuning all the microservices on the
critical path provides similar improvements. However, tuning only the microservices on the
critical path that show high variability (5 microservices) provides 40–46% improvement.
Note that this improvement is greater than that obtained by tuning all 28 microservices.
This is because dimensionality reduction reduces the configuration search space, enabling a
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more efficient tuning within the budget of 15 configurations to explore. Tuning the known
bottlenecks provides around 42% improvements, suggesting that the critical path approach
correctly identifies the microservices that have the most impact. Finally, by focusing on the
variability causing microservices, the latency improvement is about 39–44%.

In Figure 3.3b, we observe that tuning all the 31 microservices of the media microser-
vices application produces about 25–29% improvements. We observe that tuning only the
microservices on the critical path that show high variability (5 microservices) again provides
superior performance with up to 31.2% improvement, highlighting the impact of dimension-
ality reduction. The performance improvements for the critical path, the bottleneck, and the
variability techniques are 28–30%, 27–28%, and 28–30%, respectively

In Figure 3.3c, we see that tuning the 26 microservices of train ticket application results in
39–43% improvement. Tuning only the microservices on the critical path provides up to 46%
improvement in tail latency. Since the train ticket application has the most parameters, the
benefits of dimensionality reduction are more pronounced. The performance improvements
are around 44%, 42%, and 43% for bottleneck, variability, and critical path+variability,
respectively.

Fig. 3.4 Number of microservices to be tuned under different dimensionality reduction strategies for
social networking (SN), media microservices (MM), and train ticket (TT).

Figure 3.4 shows the number of microservices tuned under different dimensionality
reduction techniques, compared to no reduction, for all the three applications. While all
techniques reduce the number of microservices to be tuned by at least 50%, the “Critical path
+ variability” approach (Performance variance along the critical path) allows us to customize
and aggressively reduce the number to just 5. Despite this substantial reduction in the number
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Fig. 3.5 Illustration of coverage of the top 20 parameters captured by different dimensionality reduction
techniques.

of microservices to be tuned, the “Critical path + variability” approach provides significant
tail latency reduction for the applications we consider, as highlighted in Figure 3.3.

To further contrast the four different dimensionality reduction techniques, we consider
the overlap in subsets of microservices chosen by the techniques. For the social networking
application, we find that only two microservices are common among all the subsets: (i)
post-storage-memcached is an important microservice as it caches posts that are read by
requests that constitute 90% of the workload; and (ii) compose-post-service is critical in
the call graph of the request that writes posts as it is called multiple times per request. This
shows that, despite differences in the subsets, all techniques have the ability to identify some
of the important, performance-impacting microservices.

A potential drawback of reducing the dimensions by omitting microservices for optimiza-
tion is that a dimensionality reduction technique could miss out on important parameters.
To evaluate this hypothesis, we find the 20 most important parameters using the offline and
expensive fANOVA [88] approach and determine how many of these 20 parameters are
captured by different dimensionality reduction techniques in Figure 3.5. We find that while
the different dimensionality reduction techniques do not capture all 20 important parameters,
they do capture 3–4 parameters out of the top 5. We note that fANOVA parameter importance
analysis can be used to reduce the number of dimensions, but the amount of training data and
effort required makes this approach impractical.
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(a) Social networking application.

(b) Media microservices application.

(c) Train ticket application.
Fig. 3.6 Improvement in latency compared to default configuration (left y-axis) and the time incurred
by the optimization (right y-axis) for all algorithms when tuning the microservices of the applications
with no dimensionality reduction.

Comparing different optimization algorithms

Figures 3.6a, 3.6b, and 3.6c show the (sorted) percentage improvement (on left y-axis) in tail
latency over the default configuration afforded by different optimization algorithms with no
dimensionality reduction for the social networking, media microservices, and the train ticket
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applications, respectively. For comparison, we show (as DC) the improvement afforded by
the configuration employed by the developers of the DeathStarBench [5] and the train ticket
application [181].

For the social networking application in Figure 3.6a, we see that Hybrid algorithm
provides the best improvement of around 43%, followed closely by BO GBRT (42%) and
BO GP (41.8%). Using the configuration chosen by the developers provides a modest
improvement of 6% over the default configuration. To evaluate the overhead of different
optimization algorithms, we plot (as red triangles with right y-axis) the time taken by the
optimization across all iterations in Figure 3.6. We find that DDS requires the least amount
of time (10ms), followed by SA (0.8s) and BO TPE (1.4s). Hybrid is also relatively quick,
requiring about 1.7s. GA and PSO incur a high overhead; this is expected as evolutionary
algorithms are computationally intensive.

For the media microservices application, as seen in Figure 3.6b, the BO TPE algorithm
provides the best configuration with an improvement of around 32%. DDS again takes
the least amount of time, about 9ms. The Hybrid algorithm also performs well, with an
improvement of around 29% and requiring about 3s of time. Using the configuration provided
by the developers only provides a nominal 2% improvement over the default configuration.

For the train ticket application, the Hybrid algorithm again performs the best with 43%
improvement over the default configuration, closely followed by BO GBRT (42.84%) and BO
RF (42.72%). The developer’s configuration performs worse than the default configuration
because of which it is excluded from Figure 3.6c. It is interesting to note the impressive
performance of random search (36% improvement) considering the negligible run time
(∼ 1ms). The existence of multiple optimal regions, as discussed in Section 5.1.4, is one
likely reason for its good performance. Further, randomized configuration settings have been
shown to perform well when tuning databases [56, 38].

Based on the above results, we conclude that, for our evaluation, Hybrid is the best
performing algorithm for the social networking and train ticket applications whereas Tree-
structured Parzen Estimator (TPE) provides a good tradeoff between latency improvement
and optimization runtime for media microservices.

Convergence analysis of algorithms

The results shown thus far are based on the best configuration picked by the algorithms from
among 15 iterations. To analyze the significance of number of iterations and variance across
different sequences (runs), we plot the best improvement afforded until different iterations
for BO GP and Hybrid, across 3 different sequences of these algorithms, in Figure 3.7
for the social networking application. Although the different sequences vary during the
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Fig. 3.7 Efficiency of various algorithms over 15 iterations when tuning on the critical path of social
networking application.

initial iterations, they eventually converge well within 15 iterations. This suggests that the
variability between runs is low, explaining the narrow error bars in our results.

We also analyzed the results for 100 iterations and found that the additional performance
benefit afforded over 15 iterations is only about 1–2% compared to the best solution in
Figure 3.6, suggesting that the optimization algorithms converge quickly. This is useful
in practice given that each additional iteration imposes certain overhead and application
downtime.

Significance of initial configuration

The optimization algorithms typically start with a randomly sampled configuration. To assess
the significance of this initial configuration on performance improvement and convergence,
we specifically set the initial configuration of the social networking application to one that
we know performs poorly to check how the optimization recovers; we use BO GP for this
evaluation. For example, we limit the number of processes for the Nginx microservice to 1, set
the Memcached cache size to 16MB, etc. We find that, despite the poor initial configuration,
the algorithm does provide significant improvement over the default configuration, with only
a 3.4% relative drop in performance compared to the randomly chosen initial configuration
case.

Analysis of configurations set by algorithms

To better understand the optimal configurations, we now analyze the specific parameter
configuration values determined by different algorithms. Without loss of generality, we
consider the social networking application and analyze the values selected by each algorithm
for the top 5 important parameters. To identify the important parameters, we employ
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Parameter (associated microservice) Range Default
Optimization algorithms

∣ BO GP ∣ BO GBRT ∣ TPE ∣ DDS ∣ PSO ∣ SA ∣ hybrid ∣ GA ∣ BO RF
worker_processes (frontend-nginx) 1-48 24 24 21 23 19 20 26 23 19 20

zset-max-ziplist-entries (social-graph-redis) 64-512 128 64 108 77 68 92 238 109 120 89
io_threadpool_size (social-graph-service) 1-48 13 33 36 43 34 33 46 29 33 30
memory_limit (MB) (post-storage-memc) 32-20k 64 4k 6.8k 5.8k 7k 8k 9.1k 8.8k 13k 6.4k

hz (user-timeline-redis) 1-100 10 43 64 60 57 41 61 52 71 39

Table 3.1 Top-5 important parameters (as identified by fANOVA analysis) for the social networking
application.

fANOVA [88], which uses an empirical performance model based on random forests to
analyze how much of the observed performance variation in the configuration space is
explained by a single parameter or combinations of few parameters. To obtain the data for
fANOVA, we sample the configuration space by running up to 1000 experiments for various
configurations and collecting the corresponding 95th percentile latency.

For the social networking application, the top 5 parameters (along with the associated
microservice), in the order of importance, and the values assigned to them by each algorithm,
are given in Table 3.1. The top parameter is the worker_processes parameter of the frontend
microservice (NGINX). While the default value of this parameter is 1, for a fair comparison,
we override the default value to the number of cores in the server (24) as suggested in product
documentation [2]. We set the allowable range for this parameter to be 1–48. As seen in
Table 3.1, the values set by different algorithms are close to 24. Since the worker processes
for the social networking application do not perform any I/O, a high value for worker_process
would lead to contention and a low value would lead to decreased processor utilization. This
shows that all algorithms judiciously choose the worker_process value.

The second most important parameter is the zset-max-ziplist-entries of the social-graph-
redis microservice. This parameter sets a limit on the number of entries allowed in a ZSET
(sorted sets) for it to be encoded as a ziplist. The memory savings due to ziplist come at the
cost of CPU usage—CPU cycles are spent on decoding every read, partially re-encoding
every write, and may require moving data in memory. As seen from the table, the value of
this parameter is always set below the default, except for the one generated by SA, signifying
the benefits of prioritizing CPU over memory savings.

The next important parameter is the io_threadpool_size of the social-graph-service,
which dictates the size of the I/O thread pool for TNonblockingServer [33]. We see that
the io_threadpool_size value selected by different algorithms is consistently higher than the
default value (13), suggesting that the default configuration was under-utilizing the resources.

The next important parameter is the memory_limit value for post-storage-memcached
micorservice, which is set at 64MB by default. Table 3.1 shows that the various optimization
algorithms have a memory_limit value of at least 4GB for this microservice. This is a critical
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microservice that is along the critical path of 90% of the requests, substantiating the extra
memory allocation to improve performance.

Finally, the hz parameter sets the frequency of invocations of background tasks to remove
expired keys in Redis [22]. For the user-timeline-redis microservice, the value selected
for hz is much higher than the default of 10, indicating that the additional use of CPU
by this microservice (at the expense of other microservices) is worth the improvement in
performance.

Table 3.1 highlights the similarities (e.g., for worker_processes) and differences (e.g., for
zset-max-ziplist-entries) in the parameter values chosen by the optimization algorithms. The
differences suggest that the algorithms do converge to different locally optimal configurations
(as opposed to a single globally optimal one); despite the different configurations, the
resulting latency benefits are comparable (as seen in Figures 3.6a, 3.6b, and 3.6c). The
similarities suggest that minor differences in values (within a range) of some parameters may
not significantly impact performance; a valuable future direction is to discretize some of the
parameter ranges to reduce the configuration space.

Microservice-level analysis of latency reduction afforded by the best configuration

The workloads used in our experiments consist of a mixture of different request types (see
Section 3.4.1). The 95th percentile latency depends heavily on the request type that takes
the longest time. To analyze the ability of optimizations in prioritizing microservices that
serve the long-tailed request types, we compare the service time (95th percentile) of all
microservices along the call graph of different request types for the best configuration across
all experiments (i.e., across all algorithms and all dimensionality reduction strategies) with
the default configuration.

For the social networking workload, based on the experiment logs, we find that read-user-
timeline requests influence the 95th percentile of the workload latency the most, followed by
read-home-timeline. post-storage-memcached and post-storage-mongo microservices, which
are along the critical path of both these request types, can thus have a significant impact
on workload latency. In case of the read-user-timeline request type, the best configuration
results in 65% and 28% reduction in service time of post-storage-memcached and post-
storage-mongo microservices, respectively. The user-timeline-redis, which is on the critical
path of read-user-timeline, sees a 56% reduction in its service time. On the other hand,
the microservices along the call graph of light-tailed compose-post request type experience
a nominal increase in service time, notably user-timeline-mongo (7% increase), where
the user’s post IDs are written as part of the compose-post request type. For the user-
timeline-mongo microservice, the best configuration across all experiments chooses zlib as
the compression algorithm which uses more CPU than the default (snappy) [16]. Likewise,
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the best configuration sets wiredTigerConcurrentWriteTransactions to 74 (lower than the
default of 128), limiting the maximum concurrent writes, and increasing the service time of
user-timeline-mongo.

We find similar patterns (of prioritizing parameters of microservices that serve heavy-
tailed request types) for other applications as well. For example, for media microservices,
compose-movie-review request type influences the workload’s 95th percentile latency the
most. compose-review-service microservice, which is along the critical path of the compose-
movie-review requests, sees a 35% reduction in 95th percentile of the service time when the
best configuration across all experiments is applied. The key takeaway here is that despite
the optimization algorithms being oblivious to the workload mix, they sample the search
space well enough to find configurations that are near-optimal for the workload.

3.5 Conclusion
Despite the recent shift in application design to microservices architecture, the fundamental
problem of setting the configuration of individual microservices to improve performance has
received very little attention, with practitioners instead settling for sub-optimal performance
via default or ad-hoc configuration settings. This work makes the case for configuration
tuning of microservices.

Our investigation of different joint optimization techniques shows that significant im-
provements in tail latency, up to 46%, can be realized via configuration tuning. While most
algorithms perform well, the optimal algorithm is application-dependent; further, combining
different algorithms can provide superior performance for some applications. Our analysis
reveals that the optimal configuration of a microservice (e.g., MongoDB) need not be the
same across applications or even across instances within the same application.

We also investigate techniques to reduce the tuning effort across algorithms. We consider
different approaches to dimensionality reduction and find that focusing on tuning the mi-
croservices on the critical path that have the highest service time variability is an effective
dimensionality reduction technique.

We conclude that dimensionality reduction based on system characteristics is an effective
approach to the otherwise intractable problem of optimizing a large state space.



Chapter 4

Post-deployment Configuration Tuning

Real-world application/service deployments have hundreds to thousands of inter-dependent
configuration parameters, many of which significantly influence performance and efficiency.
With today’s complex and dynamic services, operators need to continuously monitor and set
the right configuration values (configuration tuning) well after a service is widely deployed.
This is challenging since experimenting with different configurations post-deployment may
reduce application performance or even disrupt its functions. Existing approaches to this
problem use ML algorithms to automatically change configuration values, but they do not
address several other important steps needed to effectively tune configuration in deployed
applications.

This chapter presents SelfTune and OPPerTune, frameworks that enable configuration
tuning of applications in deployment. SelfTune uses domain expertise to tune cluster man-
agers and complex distributed applications. OPPerTune reduces application interruptions
while maximizing the performance of deployed applications as and when the workload or
the underlying infrastructure changes. It automates three essential processes that facilitate
post-deployment configuration tuning: a) it determines which configurations to tune, b)
it automatically manages the scope at which to tune the configurations, and c) it uses a
novel reinforcement learning algorithm to simultaneously tune numerical and categorical
configurations fast, thereby keeping the overhead of configuration tuning low.

We first briefly discuss SelfTune and its application to tuning Kubernetes’ Vertical Pod
Autoscaler and DeathStarBench benchmarking application. Following this, we discuss
OPPerTune, its design and evaluation in detail.

4.1 Introduction: SelfTune
Large cloud services depend upon cluster managers such as Protean [82], Borg [160],
Twine [156], and Kubernetes [10] for job scheduling [137, 63, 125, 64, 92], virtual machine



40 Post-deployment Configuration Tuning

pre-provisioning [111], and resource autoscaling [109, 132, 135]. Cluster managers employ
algorithms or heuristics to improve metrics such as throughput, latency, and resource uti-
lization. Often, these algorithms rely on multiple configuration parameters that critically
influence their behavior, that we call cluster manager parameters. For instance, Kubernetes
exposes parameters cpu-histogram-decay-half-life and recommender-interval to
help the autoscaler [12] react promptly to changes in cluster utilization without reacting to
extremely ephemeral changes in utilization.

Cluster man-
ager

Parameter Description Default

cpu-histogram-decay-half-life How long to wait before halving the weights of past
CPU measurements

24 hours

recommendation-margin-fraction Fraction of usage added as the safety margin to the
recommended request

0.15

Kubernetes pod-recommendation-min-cpu Minimum CPU recommendation for a pod 25 millicores
(Vertical Pod history-length Window length for CPU utilization histogram 24 hours
Autoscaler) pod-recommendation-min-memory Minimum memory recommendation for a pod 250 MB

memory-histogram-decay-half-lifeHow long to wait before halving the weights of past
memory measurements

24 hours

memory-aggregation-interval Window length for memory utilization histogram 24 hours
recommender-interval How often the resource utilization metrics should be

fetched
1 minute

Azure FaaS prewarm Time to wait before pre-loading function code 5
(App manager) keepalive Time to wait before retiring the loaded VM 99

Azure Protean num-aa Number of rule-based VM allocation agents
(VM allocator) k k-highest quality clusters for VM placement [8,16]

Table 4.1 Key numerical configuration parameters of popular cluster management frameworks.

Every cluster manager relies on developers1 to manually set these configuration man-
agement parameters to “suitable” values. Table 4.1 gives examples of such parameters
(not exhaustive) for different cluster managers. Typically, developers set these values us-
ing a combination of domain-knowledge and a limited set of manually-run tests or ca-
naries [87, 157, 155]. While using domain knowledge is a step in the right direction, limited
testing has many disadvantages. First, the tests may not widely explore different values
of these parameters in different environments. Second, the search space of feasible values
explodes exponentially when multiple inter-dependent parameters can be tweaked simulta-
neously. Third, cluster usage can change with time, and the best parameter values would
therefore change with time as well. Consequently, clusters with manually tuned parameter
values may result in reduced throughput, high request latencies or low resource utilization.

To address this problem, we observe an interesting similarity between cluster manager
algorithms and reinforcement learning (RL) algorithms. Cluster managers (examples in
Table 4.1) often use state reconciliation: periodically, they observe the current state of a

1For brevity, we refer to anyone developing, deploying or monitoring cluster managers – developers,
operators, service engineers – as “developers”.
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cluster in terms of health and utilization metrics, compare it to a desired state, and take
action to move the observed state closer to the desired state [54]. For instance, the Kuber-
netes autoscaler [12] continuously determines how to update container sizes, by maintaining
a histogram of recent resource utilization values. RL algorithms are also iterative in na-
ture, and use “rewards” to periodically improve and converge a system to an optimal state.
Hence we observe that cluster managers are naturally amenable to RL techniques for tuning
configuration parameters.

In this chapter, we propose SelfTune, a framework that automatically tunes such con-
figuration parameters in deployment, rather than through testing. Three key aspects of
our framework are: (i) SelfTune piggybacks solely on cluster manager’s periodic metric
measurements, to help tune the cluster manager parameters, so that both tuning and the
cluster state reconciliation can occur simultaneously with the same goal of moving the
cluster continuously towards optimal state; (ii) SelfTune provides a light-weight API for the
developers to augment the cluster manager code specifying which parameters to tune, and an
objective, e.g., average CPU utilization should be at least 60% but less than 90%; and (iii)
SelfTune uses a principled RL algorithm called Bluefin, based on theoretically-founded ideas
for time-varying rewards [70, 136], to optimize the developer-specified objective; it gradually
explores “perturbed” choices for the cluster manager parameters, observes the cluster state,
and iteratively tunes the parameters to achieve the objective.

We have deployed SelfTune on WLM, a scheduler which manages background job
scheduling for many Microsoft M365 services including Exchange Online. WLM runs
on hundreds of thousands of machines, of which about a third currently uses SelfTune’s
parameter tuning. Our deployment has been running for the last six months. We find
that SelfTune has improved cluster throughput by 15%–20% in multiple clusters, while
simultaneously improving the resource health in some cases. Based on this, operators are in
the process of rolling out SelfTune on the entire fleet of machines.

This work makes the following contributions.
(1) We present SelfTune, a framework that developers can use to automate parameter search
for their cluster manager via a minimal interface (Section 4.4).
(2) We use a novel algorithm, Bluefin, based on rigorously-studied ideas in online learn-
ing [70, 136], which allows multiple parameters to be tuned quickly and simultaneously. We
show that, using this algorithm, SelfTune enables systems to converge to their objective, i.e.,
their most desired state faster than previous systems that use Bayesian Optimization [140]
and state-of-the-art RL algorithms [49] (Sections 4.2). We have integrated and open-sourced
Bluefin with a popular machine-learning toolkit [27].
(4) To the best of our knowledge, ours is the first work to describe a developer-centric frame-
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work that allows automated parameter tuning for online systems, not just cluster managers,
with large-scale deployments. We show the generality of SelfTune in the contexts of container
rightsizing with Kubernetes and DeathStar benchmark [73] (Section 4.2), yielding significant
improvements in tail latency as well as throughput.

4.2 Container Rightsizing
In this section, we show how SelfTune can be integrated with microservices architecture and
Kubernetes to improve (a) cluster resource utilization, and (b) tail latencies of microservices-
based cloud applications. We also present comparisons with BO and RL techniques.
Simulation setup: We use the social networking application in the DeathStarBench mi-
croservices benchmark [73]. We set up a cluster with 4 servers, each with 24 cores, 40GB of
memory and 250GB of disk space. We restrict monitoring services to one server to avoid
interference and deploy the microservices on the other three servers based on the functionality
(e.g., all backend microservices are on one server). We simulate a diurnal workload, with
short traffic bursts. Following [146], the workload generator [28] issues GET (read timeline),
POST (create new post) requests continuously for 15 minutes at 500 requests per second, in
the ratio 9 (GET):1 (POST).
Configuration parameters: We tune two types of parameters: (i) the first 4 CPU-related
parameters listed in Table 4.1 for the Kubernetes VPA (Vertical Pod Autoscaler) [12],
which impact the efficiency of autoscaling and throughput, and (ii) about 85 key numeri-
cal configuration parameters (2–5 parameters per microservice) for the 28 microservices
in DeathStarBench (as identified in [146]), which impact the application latency.
Compared methods: We compare SelfTune’s Bluefin with two standard techniques: (i)
Bayesian Optimization — the Gaussian Process (GP) method [47], implemented in [24], and
used in [39, 175, 146], (ii) Contextual Bandits [49] RL technique — the ε-greedy algorithm
implemented in [27], and used in [35, 34]. For all the experiments, we initialize SelfTune

and BO (GP) with the default parameter values as well as random values, and report the best
results for each method. Each 15-minute peak workload constitutes a sample (a round). We
fix a budget of 50 samples for all the methods for fair comparison. We configure the ε-greedy
algorithm to explore for the first 25 rounds and then exploit for 25 rounds.

4.2.1 Results

Optimizing throughput: We now demonstrate the significance of tuning Kubernetes VPA
parameters. We set up a barebones version of DeathStarBench application, where Nginx
microservice with two replicas serves static content for the GET requests. We use one of
the servers in the cluster as controller node and another as the worker node [11]. As the
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Metric Bluefin BO (GP) ε-greedy Default

Throughput % 86.1 ± 2.2 83.9 ± 3.1 71.2 ± 4.3 49.8 ± 1.8
# Samples 12 14 13 -

Table 4.2 Tuning key parameters of Kubernetes VPA.

requests are light-weight, we ramp the workload up to 10000 rps, and see how quickly
Kubernetes autoscales to catch up with the workload. In general, it has been found that
default configuration for the Kubernetes VPA can hurt system performance [25]. For instance,
with the default value of recommendation-margin-fraction = 0.15, Kubernetes will add
a margin of 0.15 * computed CPU recommendation to allow the container to adapt to sudden
changes in the workload. This ramp up can be quite slow at such high workloads. On the
other hand, setting the parameter to a very large value might help quickly catch up with the
heavy workload, but will lead to severe resource wastage once the peak dies.

A natural question is if we can tune these VPA parameters to help improve resource utiliza-
tion. We use the throughput attained (over the 15-minute peak workload), with a penalty on
the cpu-histogram-decay-half-life value as the reward function, to minimize wastage
during off-peak hours.

Table 4.2 shows the best throughput achieved (mean and std. dev. over 5 deployments
of the best parameters) and the number of samples needed by each of the methods to attain
the best value. We find both BO and Bluefin converge, fairly quickly, yielding over 75%
better throughput relative to the default configuration; Bluefin achieves the best through-
put overall, an absolute improvement of 2.2% compared to BO. At convergence, Bluefin
sets recommendation-margin-fraction to 1.5, and pod-recommendation-min-cpu to
850 millicores (see Table 4.1). All the methods converged to a small value (about 45 sec-
onds) of cpu-histogram-decay-half-life, which is ideal for short bursts of workloads:
Kubernetes evicts the worker containers right after the peak.

In what follows, we show how we can also tune the configuration parameters of microser-
vices (running in containers) themselves, in order to improve application latency based on
the workload.

Optimizing tail latency: Microservices that are deployed in containers have multiple
configuration parameters [19, 26, 18, 22, 14] that influence their performance. For instance,
the number of threads of performance-critical microservices (e.g., compose-post-service in
DeathStarBench) is known to significantly improve latency [149, 146]. We tuned 85 key
numerical parameters of the microservices in DeathStarBench with P95 latency as the reward
for all the methods.
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Metric Bluefin BO (GP) ε-greedy Default

P95 latency (ms) 19.5 19.9 20.0 31.1
# Samples 8 41 30 -

P50 iter. cost (ms) 20.5 23.3 29.2 -
P75 iter. cost (ms) 21.1 33.0 33.2 -
P95 iter. cost (ms) 28.3 76541.9 67640.3 -

Table 4.3 Tuning parameters of microservices in DeathStarBench: The second row indicates the
number of samples (i.e., rounds) it took for each method to attain the best P95 latency reported in the
first row. The last three rows show the spread of the latencies while tuning over 50 rounds.

Table 4.3 shows the best tail (P95) latency attained by each of the methods and the number
of samples they took to achieve the same. Bluefin quickly converges to 19.5ms P95 latency
(starting from 31.1ms, corresponding to the default values), with just 8 samples; in contrast,
BO and ε-greedy algorithms take 3-5 times as many samples to attain a latency value that is
close. We also show the iteration cost, i.e., the latency incurred through each round of tuning
(which matters in deployments). The spread of the iteration costs for SelfTune indicates
convergence close to 20ms. In contrast, the other two methods have much worse convergence
behavior, as witnessed by P50 iteration cost being far from the best values attained by these
methods. We deployed each parameter setting three times, and report the median value.

4.3 Introduction: OPPerTune
The performance and efficiency of large services and applications 1 depend heavily upon
how they are configured. Configurations can be system-level, such as read_ahead_kb which
decides how much extra data to read from disk during I/O in Linux, and resources.limits.cpu
that limits the amount of CPU a Kubernetes container uses. They can also be application-
level, such as maxmemory, the memory usage limit at which Redis starts evicting keys.
Any large application invariably includes hundreds, if not thousands, of such configuration
parameters at multiple layers and components [117, 155, 85, 114, 182, 58] .

Today, application operators determine the configuration values using domain-knowledge
and canary testing on relatively small deployments before widely deploying the application.
But operators can hardly be expected to have perfect domain-knowledge and canary test-
ing can only emulate a limited environment. Moreover, application behavior can change
considerably with time and therefore the configuration values set before deployment may
not work well in the longer term. Developers continuously add features and optimize code,
the user population increases or drops, and usage behavior varies [112]. Further, machines

1Henceforth, we use the word “application” to mean any cloud-deployed service or application.
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that host the application are continuously retired and newer machines with very different
profiles are introduced [156, 182]. Consequently, to squeeze the most performance—say
throughput or latency—or to make it run efficiently on as small a set of resources as possible
without compromising performance, operators need to constantly monitor and modify these
configuration parameters well after they have deployed the application.

Manually exploring and changing the configurations at regular time intervals can be
extremely tedious and risky too, given that the number of parameters is large and, more often
than not, the values of parameters can depend on each other and the deployment environment.
Several recent efforts have proposed the use of machine-learning based techniques [66,
183, 159, 104, 114, 147, 58, 37, 97, 106] to automate the process of configuration tuning.
These efforts use online learning or reinforcement learning to set the configurations, observe
application state to determine how well it is doing, and then iteratively refine the configuration
based on the observed states. This approach does reduce the burden on the operator and
yet, the problem is far from solved. The algorithm is only one necessary component of post-
deployment configuration tuning: to solve the problem, one has to consider the end-to-end
process of configuration tuning which consists of various other components.

First, since services can easily have thousands of configuration parameters, it would be
prohibitively expensive to automatically tune all of them simultaneously. Thus, an automated
approach should determine which components or layers of the service to tune, and for each
component or layer, which configuration parameters it should tune.

Second, when a service is running, all configuration parameters are not equally easy
to tune. For instance, changing worker_process of Nginx (this sets the number of Nginx
worker processes) requires only a service reload after changing a configuration file [4] with
no downtime, but changing wiredTigerCollectionBlockCompressor in MongoDB requires a
pod restart which leads to a downtime of close to 8 seconds when deployed with the recreate
strategy on Kubernetes [21]. Changing isolcpus, the parameter that isolates CPUs from the
kernel scheduler in Linux, will require an entire system reboot [148]. Previously proposed
algorithms do not consider this varying difficulty of tuning different types of parameters.
Moreover, to reduce potential disruptions for deployed services, the tuning approach should
use a very small number of iterations to converge on the right values.

Third, the tuning system needs to determine the right context for each tuning instance. It
could tune a single set of configuration values for the entire service, or it could tune different
values for each geography, or perhaps for every machine type. We refer to this as determining
the right tuning scope. Currently, the operator has to scope the tuning instances manually
irrespective of the tuning algorithm used.
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Finally, standard algorithms for tuning may be inapplicable or inefficient. They work
only on numerical [70, 97] or only on categorical [44, 93, 153, 49] parameters; real-world
services will almost always have a combination of categorical and numerical parameters. For
instance, Redis’s maxmemory and maxmemory-policy (sets the eviction policy) are related
parameters that are of type numeric and categorical, respectively. Moreover, previously
proposed techniques like Bayesian Optimization [40, 38] are not meant for reinforcement
learning scenarios when the environment of the service can continually change. Deep neural
models for configuration tuning [105, 134] can take a very long time to train which is
infeasible in deployment. A practical, deployable approach should generalize to all types of
configurations, and should converge quickly.

We have designed, developed, and deployed OPPerTune (Online Post-deployment
Performance Tuner), a configuration tuning service that addresses all the above challenges.
Application operators can use OPPerTune to create automatic tuning instances, specifying
the configuration parameters they wish to tune. The OPPerTune service supports (a) various
algorithms in its back-end that the tuning instances could use, and (b) ways to automatically
create, manage, and scope the instances needed to tune the performance of large-scale com-
plex services. The contributions we make are:
1. OPPerTune introduces a novel tuning algorithm which can tune categorical and numerical
parameters simultaneously, within the same instance.
2. OPPerTune uses a novel decision-tree based algorithm to automatically determine the
right scope of tuning instances.
3. We have built OPPerTune as a cloud service which application developers can invoke
for tuning enterprise-scale applications with large number of categorical and numerical
parameters.

We have evaluated OPPerTune using two applications: the social networking application
from the DeathStarBench benchmark suite and a popular data processing platform used
within an enterprise for ML model prototyping and development. Our results show that by
using OPPerTune to tune configuration parameters, (i) the tail latency of the application
consisting of tens of microservices reduces by more than 50% while tuning in deployment,
compared to carefully-chosen pre-deployment configurations; (ii) the workload completion
times drop by 10%-50% on two enterprise-scale data processing production clusters. We
also show that OPPerTune is effective in reducing service disruptions that may occur due to
configuration tuning by nearly 30%.
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4.4 OPPerTune Overview
In this section, we give a brief overview of OPPerTune. We will use the term ‘appli-
cation’ to refer to the system/service/application being tuned to avoid confusion with
the OPPerTune service itself.

Configuration tuning problem: The goal of OPPerTune is to continuously tune the
specified configuration parameters of an application such that, over time, a given reward
metric (e.g., daily P95 latency, or how far off the hourly resource utilization is from the
desired bounds) is maximized, and the application sustains good performance through long-
term and short-term hardware changes and workload fluctuations. OPPerTune works under
the least knowledge of the application being tuned, i.e., black-box access. In particular,
it does not have access to the code-base of the application or any knowledge of how its
performance metrics are computed. OPPerTune relies only on the reward as feedback from
the application (after a certain amount of time) for a set of configuration values it sets for the
application. It uses this feedback to tune the configurations iteratively.

Consider the following example. A web application uses two containers on a single
machine: one to host a front-end webserver, and the other to run a back-end database. While
serving user requests, the application can enlist OPPerTune to learn how to distribute the
machine’s memory and compute between the webserver and the database so as to minimize
P95 request latency. OPPerTune consumes feedback (or reward) from the application in the
form of observed hourly P95 latency, and uses multiple hours’ feedback to converge on the
right memory and compute distribution between the two containers. Request characteristics
can vary with time; thus, OPPerTune may need to change the distribution of memory and
compute frequently, and converge quickly to stable configuration values while continuing to
minimize P95 latency.

OPPerTune architecture: Figure 4.1 presents the high-level architecture of the OPPerTune
service. The basic unit of the service is a tuning instance that consists of (a) configuration
parameters, their data types, enumerations of possible values for categorical configurations
or ranges for numerical configurations; and (b) a tuning algorithm for updating the instance.
Applications can create one or more tuning instances to tune configuration parameters across
various layers of the application stack, based on its requirements (as shown for ‘App 2’ in the
figure). Alternatively, OPPerTune provides an automatic scoping component (autoscoper)
to help applications create, manage, and scope the tuning instances in deployment based
on dynamic context information they provide (as shown for ‘App 1’). OPPerTune also aids
applications pre-determine (using an offline step) which configuration parameters to tune in
deployment via the selector module.
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Fig. 4.1 OPPerTune service architecture: Applications create tuning instances on the server to
tune various configuration parameters. Autoscoper helps automatically create, manage, and scope
tuning instances based on the application’s dynamic context. Selector helps pick the most promising
configuration parameters to tune.

Creating, fetching, and updating tuning instances: An application wishing to use
OPPerTune makes an API call to create a tuning instance. OPPerTune persists tuning
instances on a database for the application to access at any point in time, possibly from
multiple machines. For each configuration parameter it wants to tune, the application can
optionally supply the cost associated with changing it. Of particular interest in our work
is whether, to update a parameter value, a system (container or VM) needs to restart. Such
parameters should have a high cost associated with them. When the application provides
such costs for some parameters, OPPerTune uses them to decide how often to tune the
configuration parameters. OPPerTune implements the standard fetch and update client-API
paradigm of existing work [35, 97] for online tuning. The application invokes (a) Predict to
fetch the recommended configuration values from a tuning instance, and (b) SetReward, at
some point in time after (one or more) Predict calls, with a reward value. The SetReward call
updates the associated tuning instance, as per the tuning algorithm it uses.

Autoscoper: Applications may have different performance characteristics on machines
with different CPUs or memory sizes, and hence may consider using a different configuration
tuning instance for each machine type. Similarly, applications could behave differently for
light versus heavy workloads, and for different API call types. For instance, if the application
runs independently on the cluster machines with varying hardware and workloads, then it
could create one tuning instance per machine (as is done in [97] for tuning configuration
parameters of a workload scheduler). Thus, tuning instances for the application could be
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“scoped” along (at least) three dimensions: infrastructure (e.g., machine type), functionality
(e.g., API call), and workload (e.g., requests per second). Currently, determining the “right”
scope for tuning instances is usually done, if at all, by domain experts [97], and periodi-
cally revisited. As an alternative, in Section 4.6, we introduce an automatic, efficient, and
interpretable way of scoping tuning instances, that we call AutoScope.

Configuration selector: For applications that have several hundreds or thousands of config-
uration parameters to tune across various layers of the application stack, OPPerTune employs
a selector module to pick the most promising configuration parameters to tune. The selector
module uses a simple and effective microbenchmarking strategy to identify such configura-
tions, as discussed in Section 4.7.

Rounds and Sample complexity: Online tuning algorithms, implemented in OPPerTune’s
back-end, iteratively tune the configuration parameters. Each iteration is called a round.
At each round, the tuning algorithm (i) determines the next set of parameter values for
the application, (ii) observes a reward computed by the application over a predetermined
period (1 hour, 24 hours, etc.), and (iii) updates its “policy” (which prescribes how to choose
parameters) based on the reward. Changes made by the algorithm to configuration values
can cause disruptions, e.g., may necessitate application restarts or even cause downtime.
Thus, a desired property of a tuning service is that it requires only a few rounds to learn
suitable configuration values. This quantity, proportional to the number of rewards measured,
is called sample complexity. OPPerTune achieves low sample complexity for tuning in real
deployments, as we demonstrate in Section 4.9, using multiple techniques including a novel
tuning algorithm (Section 4.5), automatic scoping, and microbenchmarking.

4.5 Configuration Tuning in Hybrid Spaces
In this section, we give a novel algorithm for the post-deployment configuration tuning
problem stated in Section 4.4 in the basic setting when OPPerTune has no additional knowl-
edge (“context”) about the system being tuned. We begin by setting up some notation and
terminology.

4.5.1 Problem Definition and Terminology
We pose the problem of tuning configuration parameters of an application after it is deployed
as that of online learning with bandit feedback. That is, we want to tune iteratively, and the
only interface we have with the application is setting new parameter values (e.g., number
of CPU cores and memory size for the container), and the only feedback we get from the
application, in response to the set parameter values, is an observed reward value that is to be
maximized (e.g., latency or throughput of the application).
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A key aspect of bandit formulation is the explore-exploit tradeoff. We want to exploit the
“best” parameters we have obtained so far to ensure that the application is functioning well
without disruption; at the same time, we want to explore potential parameter choices that
might yield better rewards. This tradeoff is especially important in practical scenarios where
the reward function itself changes with time—the same parameter choices could have very
different effects on the service from one instant to the next. For instance, diurnal workload
fluctuations in the application workloads can induce very different reward values for the
same setting of memory requirements for a container, depending on how and when the
reward function is computed, e.g., hourly P95 latency can vary significantly between peak
and off-peak hours.

Bandit learning techniques that can handle time-varying rewards, therefore, are more
appropriate to our post-deployment parameter tuning problem than popular alternatives such
Bayesian Optimization (BO) [40, 38], heuristic search and global optimization [123], and
genetic algorithms [76]. For instance, BO needs to evaluate the same reward function at
multiple parameter values by design. This is infeasible for post-deployment tuning because
we cannot evaluate the application multiple times when it has exactly the same workload.
A lot of systems research that leverages BO typically uses it in offline scenarios (i.e., pre-
deployment tuning in controlled settings), in contrast to our post-deployment tuning scenario.

4.5.2 Hybrid Configuration Space

In practical scenarios, the space of configuration parameters can be complex: (i) it can be
very large; if there are m parameters to tune, and if each parameter has, say, s possible
values, then the total number of choices is sm, and (ii) the parameters to tune may be discrete
(e.g., number of CPU cores), real-valued (e.g., CPU utilization threshold), or categorical
(e.g., cache eviction policy). Some state-of-the-art techniques for bandit learning/RL work
for categorical spaces [44, 93, 153, 49] or numerical spaces [70, 97], but not both. Others
have prohibitive sample complexity to be useful for tuning in deployment [105, 134]. To
address this gap, we design a novel learning algorithm that can handle hybrid configurations
efficiently.

Formally, in the “hybrid configuration space” setting, we are given (a) categorical space
C ∶= C1×C2×⋯×Ck over k categorical parameters, where each Ci denotes the possible choices
for the categorical parameter i, and (b) numerical space W =W1 ×W2 ×⋯×Wm over m
numerical parameters, where eachWi indicates a subset of the real line R, e.g., specified
by lower and upper bounds for the ith parameter. Note that this characterization also allows
discrete parameters p such as number of CPU cores ranging from 2 through 16, in steps of
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2, by letting Wp = {2,4, . . . ,16}. In our formulation, we treat such discrete parameters as
numerical rather than categorical to exploit the fact that they are ordered spaces

4.5.3 Proposed Algorithm: HybridBandits

Our configuration tuning HybridBandits algorithm is presented in Algorithm 2. It leverages
two simple but key ideas. At each round,
(1) it maintains different types of policies for sampling categorical and numerical actions; in
particular: (1) ε-greedy policy for the categorical configuration space, standard in multi-arm
bandit algorithms, where with probability ε a random arm is explored, and with probability
1−ε , high-reward arms are exploited; and (2) a “perturbation” policy for numerical configu-
rations, where the algorithm samples numerical configurations from an ε-radius ball centered
around the “current best” configuration vector, and
(2) it uses a single reward that the system provides as feedback to update both the policies
simultaneously. In particular, it applies sample-efficient gradient-descent update [70, 97]
for the numerical parameters, and the exponential weights update [101, Chap. 11] for the
categorical parameters.

Algorithm 2. HybridBandits: Post-Deployment Configuration Tuning for Hybrid Spaces

1: Input: exploration parameter ε ∈ (0,1), learning rate η > 0, categorical parameter space
C ∶= C1×C2×⋯×Ck, numerical parameter spaceW =W1×W2×⋯×Wm

2: Initialize: categorical space weights p(0)i = 1/∣C∣, for 1 ≤ i ≤ ∣C∣ // uniform distribution, and
numerical parameters w(0)i ∈Wi, for 1 ≤ i ≤m // default choices

3: for t = 0,1,2, . . . do
4: Let p̃i ∶= (1−ε)p(t)i +ε

1
∣C∣

// Define explore-exploit multinomial distribution over the cate-
gorical space

1 Sample categorical and numerical actions to deploy
5: Sample c ∼ p̃ from the multinomial and let a(t)c be the corresponding k-tuple of categorical

parameters
6: Sample numerical parameters from a ball centered at w(t), radius ε; i.e., w̃(t) ∶=w(t)+εu,

where u ∈Rm is sampled from {u ∶ ∥u∥2 = 1} // Identical to Bluefin [97]
2 Deploy the actions and measure reward

7: Deploy numerical a(t)r ∶=ΠW(w̃(t)) // appropriately scaled and categorical actions a(t)c in
the application

8: Receive reward r(t) ∶= rt(a
(t)
c ,a(t)r ) ∈R // black-box access to a metric, e.g., hourly P95

latency, computed by the application
3 Perform updates based on the reward received

9: Update numerical parameters center: w(t+1)←w(t)+ 1
ε
⋅η ⋅ r(t) ⋅u, where u is the sample

obtained in Step 6.
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10: Define scaled reward: r̃(t) = r(t)/ p̃c, where c is the sample obtained in Step 5
11: Update categorical distribution: p(t+1)

c ← p(t)c eη r̃(t) , and for i ≠ c, p(t+1)
i ← p(t)i ; Renormal-

ize p(t+1) to sum to 1

end

Algorithm description: Algorithm 2 maintains a multinomial distribution p(t) over categor-
ical actions C, i.e., there is a probability associated with each possible k-tuple of categorical
parameter choices at every round t. For the numerical actions, it maintains a vector w(t) ∈Rm.

Initialization: The weights for the numerical parameters w are initialized to default choices
that the application provides. The multinomial p is initialized to the uniform distribution, i.e.,
pi = 1

∣C∣ for i ∈ C. At each round, the algorithm performs:
(1) Sampling actions (Steps 5-6): For the categorical actions, following the standard expo-
nential weights algorithm (EXP3, [101, Chap. 11]), it samples a k-tuple from the distribution
p (exploit) with probability 1−ε , and from the uniform distribution (explore) with probability
ε . For the numerical actions, it samples a m-dimensional vector from a ball centered at the
current w, with radius ε .
(2) Deploy actions and receive reward (Steps 7-8): The sampled numerical (scaled appro-
priately) and categorical configurations are then deployed in the application, and (after a
certain amount of time) the algorithm receives a reward value from the application (imple-
mentation details in Section 4.9).
(3) Update policies (Steps 9-11): For the numerical parameter weights, the algorithm follows
the gradient estimation scheme studied in the optimization literature [70], as well as applied
in the context of online system parameter tuning [97]. For the categorical parameters, it: (a)
computes an unbiased estimate of the reward for the sampled choices, and (b) scales the
probability of the sampled choices using a factor that is exponential in the reward estimate.

In practice, C can be very large; the microbenchmarking strategy discussed in Section 4.7
can be used to restrict C to the most impactful categorical parameters, and to ensure that
the algorithm has low sample complexity. We conjecture that Algorithm HybridBandits has
convergence guarantees for certain classes of reward functions (for instance, if the reward
functions rt are convex, for any fixed combination of the categorical parameters in C).
Empirically (in Section 4.9), we find that the algorithm convergences well in practice;
obtaining a formal proof of convergence is an exciting open problem.

4.6 Automatic Scoping of Tuning Instances
Consider an operator who wants to tune parameters of a distributed application that is
I/O-bound. There are two extreme options available to the operator in terms of how they
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can set up tuning instances on the OPPerTune server (Figure 4.1): (1) set up one “global”
instance to tune all the application parameters across all machines/workloads, that, say, uses
HybridBandits presented in Section 4.5 for tuning; or (2) set up multiple “local” instances
based on the domain expertise that the workloads are I/O-bound; e.g., one instance per disk
type or one instance per spindle speed, where each instance independently tunes parameters
using HybridBandits. The latter option is more appealing as the application performance,
and therefore the optimal parameter choices, are likely to vary with the disk type that the
workloads are accessing.

In this section, we consider the setting when OPPerTune is provided some context of the
application (i.e., disk type and spindle speed in the above example) being tuned at every round.
OPPerTune can exploit the observed context to simultaneously do scoping and configuration
tuning.

4.6.1 Joint Scoping and Configuration Tuning
To perform joint scoping and configuration tuning, at each round, along with the reward, the
application must provide additional context information such as machine type, disk type,
spindle speed, workload volume, etc. Using this additional context, OPPerTune determines a
light-weight and interpretable scoping policy that the operators can understand. For instance,
given job type jobtype and requests per second (rps) as context, and numcores and mem as
the configuration values to tune, it learns rules of the form if (jobtype == ‘cpu_bound’)
and (rps > 1000) then numcores=16, mem=2G else numcores=4, mem=2G. These
kinds of scoping rules can be captured by decision tree models. Each root-to-leaf path in the
tree constitutes a scope, and each leaf maintains a tuning instance for the scope.

4.6.2 Proposed Algorithm: AutoScope
Learning decision trees in the bandit setting is a challenging problem, and popular tree
learning algorithms do not apply (See Section 4.10). We extend a state-of-the-art technique
proposed in [96] (for trees with only one parameter in leaf nodes) to our general setting
where each leaf node is a tuning instance with several (hybrid) parameters. We give the key
intuitions below.

AutoScope maintains a binary decision tree fT of max specified height h (h = 3 suffices
for scenarios evaluated in Section 4.9). At first, the tree f (0)T effectively behaves like a single
tuning instance, initialized identical to Algorithm 2. At round t, the algorithm observes a
context vector, denoted as ct . When the current tree model f (t)T (ct) is applied to ct , it will
land in a unique leaf node containing a tuning instance. The root-to-leaf path ct traverses is
its “current scope”, and AutoScope will invoke the leaf’s tuning instance. This amounts to
doing one round of Algorithm 2 on the instance, thereupon updating the instance. Now the
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technical challenge is updating the tree model f (t)T parameters, i.e., the weights in the internal
nodes of the tree which make the branching (scoping) decisions. For this, we leverage the
trick from [96], that allows us to update all the internal nodes along the path traversed by ct

based on the same reward that was used to update the leaf instance. At the end of round t,
all the nodes in the scope of ct will be updated using a single reward value.

4.7 Configuration Selection
For applications that have several hundreds or thousands of configuration parameters to tune
across various layers of the application stack, OPPerTune employs a configuration selector
module (Figure 4.1) to first pick the most promising configuration parameters. This module
uses a simple and effective microbenchmarking strategy to identify such configurations; while
the techniques we outline here are heuristic, they are inspired by optimization theory [122,
124].

The role of the selector module is two-fold: (a) it prunes the size of the configuration
space for the tuning algorithm, which in turn helps reduce the algorithm’s sample complexity;
and (b) it helps minimize the number of disruptions (e.g., container restarts) in the application
while tuning. If (b) is the only goal, then an obvious strategy is to select only those configu-
ration parameters that do not require restarts. However, such a strategy might compromise
on application performance by ignoring configurations that could significantly impact the
performance. In Section 4.9.3, we show this is indeed the case.

OPPerTune uses a microbenchmarking strategy to assess the effect of changing each
configuration parameter on the application’s performance (i.e., the reward value), while
keeping the others fixed. Let us consider numerical configurations for the moment. The
strategy is inspired by how co-ordinate descent algorithms [122], that are rigorously-studied in
the optimization community, work. These algorithms pick one coordinate (i.e., configuration
parameter) at a time and compute the gradient of the reward function with respect to only
that parameter. They iteratively pick coordinates (cyclically or randomly) to optimize the
reward function.

We do not know of any variants of these algorithms that provably work in our online
bandit setting. But, we find that the basic idea is empirically effective for the goal of selecting
candidate parameters to tune. We use the same gradient estimation technique employed in
Step 9 of Algorithm 2 for each configuration parameter, while holding all other parameters
fixed (to the default choices, for example). OPPerTune accomplishes this by simply creating
microbenchmarking instances, each with just one configuration parameter, and performing
one round of the HybridBandits algorithm. The magnitude of the (scalar) gradients computed
at the instances tells us the impact of each configuration parameter. In practice, this idea
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can also be extended to categorical spaces—perform one round of the algorithm on each
categorical parameter, and compute the magnitude of change in reward for a randomly chosen
value vs. the default value for the parameter.

The next question is how to use these “gradients” to select the most promising parameters.
The configuration selector module picks top-n parameters, sorted by decreasing magnitudes
of gradients where n is customizable by the application. This greedy selection strategy, i.e.,
picking the coordinate (or parameter) yielding maximum absolute gradient, has been shown
to be provably better than other heuristics for selecting coordinates, for some classes of
reward functions [124].

Microbenchmarking can be done in canary/test rings of the application. The tuning
instances for the application can work with the selected configuration parameters in deploy-
ment.

4.8 OPPerTune Implementation
OPPerTune’s implementation has three major components: the server, client, and the algo-
rithm backend. We have implemented the server in Go using Fiber [30], and the client in
Python (for ease of integration with applications which are often written in Python). We
have implemented our proposed algorithms in Python, and have integrated the server with
existing Python implementations of other algorithms. We now describe each component in
some detail.

1. OPPerTune Server: The server implements three key interfaces for the applications
(clients) submitting requests via REST API calls: a) creation of tuning instances, b) fetching
the values from the instances, and c) updating the instances using the the reward values sent
back to the server. The server persists configuration tuning instances (consisting of the list of
parameters to tune and their constraints, and the model for tuning) in a database. Persisting
instances enables resuming from the saved model state at a later point of time, and freeing
the memory taken up by instances that are not needed. For each fetch call from the client,
the server responds with the configuration values along with a requestId. The client is
expected to pass the reward value along with the associated requestId, for the server to be
able to correctly issue an update to the corresponding tuning instance. We host the server on
a large enterprise-scale cloud platform that provides persistent storage, high availability, and
wide accessibility.

2. OPPerTune Client: The client is a library which implements easy-to-use REST API
calls; these calls provide abstraction over raw HTTP requests, and applications use them to
create, fetch (i.e., Predict), or update (i.e., SetReward) instances at the OPPerTune server.
The library also manages mapping client requests to API endpoints, payload preparation, and
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error-checking. We provide an installable package of OPPerTune client for applications to
use.

3. Service Backend/Tuning Algorithms: The backend consists of implementations of
various tuning algorithms, and autoscoper and configuration selector components. Any
tuning algorithm is expected to implement Predict and SetReward interfaces. We have
implemented (i) the proposed algorithms HybridBandits and AutoScope; (ii) state-of-the-art
online parameter tuning algorithm Bluefin [70, 97] and deep reinforcement learning (RL)
algorithm DDPG [105, 129, 134]; and (iii) with minimal effort, we have integrated the
contextual bandits-based algorithm Slates [153], and BayesianOptimization from the popular
Python libraries scikit-optimize [32] and VowpalWabbit [27] respectively. The challenge
in using deep RL techniques such as DDPG in deployment, typically, is their prohibitive
model sizes and sample complexity. They use context differently than AutoScope to learn
policies that require large complex models (the notion of scoping is implicit in DDPG).
Hence, we have implemented a custom version of DDPG with light-weight models, similar
to AutoScope, to be of use in post-deployment tuning.

4.9 Evaluation
To evaluate OPPerTune, we use a combination of microbenchmarking and real deployment
of a benchmarking application. Our evaluation focuses on the following aspects: 1) How
does application performance improve using OPPerTune?, 2) How does OPPerTune reduce
the cost of tuning (e.g., system restarts)? and 3) How effectively does automatic scoping
accelerate the tuning process in real deployments by reducing sample complexity?

4.9.1 Evaluated Application

To evaluate OPPerTune, we use the social networking application from DeathStarBench [73]
with synthetic and production traces.

Social Networking Application

We use the SocialNetwork application from the DeathStarBench [73] benchmarking suite
which mimics a stack consisting of a gateway server (Nginx), database engine (MongoDB),
caches (Redis), and application logic. The application creates a network of users, and supports
API calls to create and read messages from the users’ home pages. We use wrk2 [28] to
emulate two workloads: (a) constRPS: a mix of 90% GET (read timeline) and 10% POST
(create posts) requests (this mix has been used in previous work [97]), with the requests
generated at a constant rate (requests-per-second), and (b) AMStraces: real access traces
collected from AMS, a large-scale enterprise image-sharing service (real name withheld). We
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Layer Microservice type Number of parameters
Categorical Continuous Discrete

Microservices

memcached 0 4 16
MongoDB 12 6 12

Nginx 0 0 8
Redis 4 0 16

App logic 0 0 23

Right-sizing

memcached 0 8 8
MongoDB 0 12 12

Nginx 0 4 4
RabbitMQ 0 2 2

(Kubernetes) Redis 0 8 8
App logic 0 24 24

Table 4.4 SocialNetwork application configuration parameters (217 in total) used for Figures 4.2, 4.3,
and Tables 4.5, 4.6.

use traces collected from 3 production clusters over 4 weeks from Sep 14, 2022 to Oct 10,
2022.

For this application, the performance metric of interest is P95 latency of requests
submitted. This metric is often critical to consumer-facing services [73, 61]. For the constRPS
workload, we measure the P95 latency for each 10-minute period, and for AMStraces, we
measure it for each hour. This is fed as the reward value to the OPPerTune service.

Table 4.4 outlines the list of microservices that SocialNetwork uses. Here, “right-sizing”
layer refers to configuration parameters in Kubernetes that are used to determine the compute
and memory limits for containers running the microservices. For each of the microservices,
we tune a mix of real-valued, discrete, and categorical parameters that prior work has
identified as important to the performance of that microservice [97, 147, 2, 16, 14, 22, 26, 33].
The optimal values of these parameters depend on the workload characteristics; e.g., to
support the same P95 latency, the MongoDB microservice will require higher resource limits
for a higher request volume, and a larger number of clients would require higher concurrency
setting for Nginx, etc.

We deploy the SocialNetwork application on a cluster with 7 virtual machines (VMs)
provisioned on a large public cloud provider. Each VM hosts a copy of the application stack,
with the component microservices running on individual containers on the same VM, man-
aged by Kubernetes. Thus, by tuning the parameters in Table 4.4 appropriately, OPPerTune
allocates each VM’s resources in the right proportions to the various microservices so as to
minimize P95 latency.
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We use separate, dedicated VMs (7 more) in the same cluster as Kubernetes master nodes,
to generate the workloads. Each VM has Intel Xeon Platinum 8272CL processor (32 vCPUs),
64 GiB RAM and 250 GiB storage (large enough to support the entire application stack).

4.9.2 Improving Application Performance

Fig. 4.2 Comparison of various techniques for post-deployment configuration tuning of the
SocialNetwork application using constRPS workloads. ‘Predeployment’ is the baseline performance
achieved with configuration choices we manually chose based on 3500-rps workload.

A) Effectiveness of HybridBandits: We first look at how effective the proposed algo-
rithm HybridBandits is for performance tuning of applications in deployment, and how
it fares relative to various state-of-the-art tuning techniques that we implement as part
of OPPerTune backend (as discussed in Section 4.8). For this evaluation, we use the
SocialNetwork application, as it has a mix of real-valued, discrete, and categorical parameters
(Table 4.4). For each rps (constRPS workload), we run each tuning algorithm for a maximum
of 50 rounds. The results are presented in Figure 4.2. We report the mean and standard
deviation of P95 latencies, for the converged configuration values, over 5 trials (10-minute
windows each).

“Predeployment” in Figure 4.2 refers to the baseline performance achieved with configu-
rations we manually chose that optimized the performance for a 3500 rps workload (which is
close to the peak capacity supported by our cluster), and keeping them fixed for the rest of
the rps. “Kubernetes Autoscaler” refers to the Vertical Pod Autoscaler (VPA) [13] for deter-
mining the rightsizing parameters. VPA performs poorly in general, as it makes rightsizing
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decisions solely based on container utilization, and not on P95 latency of the application. Our
experiments also compared several existing approaches, i.e. Bayesian Optimization (BO),
state of the art RL techniques Slates and DDPG , and Bluefin with HybridBandits.

First, the benefit of using OPPerTune service post-deployment is clear: every algorithm,
almost for every rps, finds better configuration choices to adapt to changing workload
volumes. Second, almost for every rps, HybridBandits significantly outperforms BO, Slates,
and DDPG, and achieves the best P95 latency. For instance, at the peak workload of 3600 rps,
HybridBandits achieves nearly 2x reduction in P95 latency compared to the best configuration
predicted by BO that has a large variance. Third, the utility of tuning categorical parameters
together with the numerical parameters, using HybridBandits, is clear at high workloads,
compared to Bluefin algorithm in the SelfTune framework[97] that supports only numerical
parameters. In particular, HybridBandits (32.6ms) achieves about 15% reduction in P95
latency relative to Bluefin (38.6ms) for the 3600-rps workload. DDPG performs reasonably
well in high workloads, despite the absence of informative context.

Method (P50, P95, max) of P95 latency of each hour over the 4th week (ms) Sample Complexity
Cluster 1 Cluster 2 Cluster 3 (#rewards for tuning)

P50 P95 max P50 P95 max P50 P95 max

Pre-deployment choices 12.7 19.4 23.8 12.4 18.2 1959.1 12.3 44.1 4018.4 -
HybridBanditscluster, hour 10.6 17.3 19.3 9.5 19.6 21.0 10.9 17.4 36.7 756

AutoScope 10.1 15.8 23.7 8.5 13.5 17.1 7.9 15.7 33.4 252
DDPG 10.4 17.0 23.2 8.3 14.2 18.4 9.2 18.1 32.6 756

Table 4.5 Comparison of various techniques for post-deployment configuration tuning of the
SocialNetwork application using real workloads (AMStraces). Algorithms in the last three rows,
implemented in OPPerTune, use the first 3 week-traces for tuning. The first row is the baseline
performance achieved with manually-chosen configuration choices.

Takeaway 1. OPPerTune with HybridBandits achieves the best performance, especially
at peak workloads, among the state-of-the-art ML techniques used in systems performance
optimization.

B) Effectiveness of AutoScope: We now evaluate the benefits of automatically scoping
tuning instances using AutoScope, in terms of the application performance as well as sample
complexity. We consider SocialNetwork with AMStraces and MLExp for this evaluation.
1. SocialNetwork + AMStraces: We compare AutoScope with a domain-expertise based
scoping strategy, informed by the diurnal patterns of workloads in AMStraces. We use one
tuning instance for every 2 consecutive hours in a cluster-day. Each tuning instance runs
HybridBandits independently to learn suitable configuration parameters for its 2-hour scope.
We refer to this as HybridBanditscluster,hour. For AutoScope, we use average rps over every 2
consecutive hours in a day as context. We build a simple estimator for rps values using the



60 Post-deployment Configuration Tuning

first week traces, and use them for all the weeks. This is because we can not know the true
rps values (in the future) at the time of Predict calls.

We let all the methods use the first 3 weeks’ traces to tune the configuration parameters
for SocialNetwork in deployment. We then evaluate the converged parameters on the last
week’s trace. In Table 4.5, we present, for each technique and for each cluster, (a) P50,
P95, and maximum value of hourly P95 latency, computed over the last week, i.e., over 168
hours, and (b) sample complexity of the technique (i.e., # rewards used while tuning). We
compare AutoScope with (i) the baseline of using “Pre-deployment choices” of configuration
parameters, (ii) the domain-expertise based scoping HybridBanditscluster,hour, and (iii) the
deep-RL based DDPG that uses rps, and CPU and memory utilization of microservices
and VMs as features (“states”) for implicit scoping. We see that the max P95 latencies for
Clusters 2 and 3 are in the order of seconds with the Pre-deployment choices. On the other
hand, OPPerTune, using each of the three algorithms, significantly reduces the worst-case
P95 latencies. Importantly, AutoScope achieves significantly better performance in general
compared to HybridBanditscluster,hour, and DDPG in Clusters 2 and 3 especially.

What is particularly noteworthy about AutoScope is that it achieves this performance
using one-third of samples (i.e., # rewards) compared to other techniques. All the 3 clus-
ters have very similar diurnal patterns; Clusters 2 and 3 have similar workload volumes.
AutoScope is able to exploit these using the context provided, using as few as 8 tuning
instances (a height-3 tree), compared to manual scoping that uses 36 (=3 clusters × 12
time-windows in a day) tuning instances.

Takeaway 2. OPPerTune with AutoScope is able to significantly improve the application
performance, using 3x fewer samples needed by manual scoping strategies.

4.9.3 Mitigating the cost of tuning in deployment

So far, we have focused on the impact of tuning on the performance of the application. We
now turn to the cost of tuning in deployment—every change to configuration parameters in
production introduces potential risk. In particular, as we discussed in Section 4.4, tuning
certain configuration parameters necessitate microservice/pod restarts, causing downtimes.
Improving latency of the application at the expense of throughput, or service reliability, may
not be acceptable.

We evaluate OPPerTune, in terms of how it trades off improving performance and miti-
gating restarts while tuning, on the SocialNetwork application and constRPS workloads. The
results are summarized in Table 4.6 and in Figure 4.3. We consider various strategies for pick-
ing configuration parameters, followed by tuning the selected parameters with HybridBandits,
to mitigate the number of pod restarts. The first row of the table (“Microservices ∪ Rightsiz-
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Parameters/Layers Tuned P95 Latency (ms)
via OPPerTune-HybridBandits RPS = 2000 RPS = 2800 RPS = 3200 RPS = 3600

Microservices ∪ Rightsizing 5.973 ± 0.046 17.864 ± 1.150 21.068 ± 1.641 32.656 ± 2.798
NoRestarts 6.916 ± 0.076 24.545 ± 1.184 31.281 ± 1.958 70.542 ± 22.485

Microservices 6.405 ± 0.039 24.209 ± 1.594 26.764 ± 2.184 38.853 ± 2.500
Rightsizing 6.828 ± 0.022 25.373 ± 0.607 26.774 ± 2.168 70.175 ± 8.267

Microbenchmark-Top 25 6.820 ± 0.060 23.697 ± 1.802 27.022 ± 1.278 34.503 ± 2.642
Microbenchmark-Top 50 6.094 ± 0.075 19.248 ± 1.362 21.888 ± 0.853 37.821 ± 1.489

Table 4.6 Comparison of various ways of selecting parameters to tune in the SocialNetwork application
stack using constRPS workloads. Microbenchmarking strategy (last row) yields performance nearly
as good as tuning all the parameters (first row).

ing”) corresponds to tuning all the parameters listed in Table 4.4. The second row of the table
(“NoRestarts”) corresponds to tuning only the parameters that do not require any restarts. As
expected, they achieve the best and the worst P95 latency values, respectively.

In Section 4.7, we introduced the microbenchmarking strategy in OPPerTune for picking
the most promising configurations ahead of tuning in deployment. The last row of Table 4.6
shows the performance achieved using HybridBandits on the top-50 parameters: (i) in 3
out of 4 workload rates, we see that the strategy achieves statistically similar performance
as the best (“Microservices ∪ Rightsizing”); (ii) with the reduced configuration space,
HybridBandits converges within 30 rounds, compared to the 50 rounds needed by the best
method (not indicated in the table); and (iii) HybridBandits is superior to tuning only the
microservices layer parameters (third row) or rightsizing layer parameters (fourth row). We
have also included the performance using top-25 in the fifth row for comparison.

Figure 4.3 shows the number of pod restarts per round and the corresponding average P95
latency for each of the five strategies shown in Table 4.6. We see that our microbenchmarking
strategy achieves a good trade-off between cost and performance, using 2800-rps workload

Fig. 4.3 Number of microservice pod restarts (per round) and mean P95 latency (RPS=2800) while
tuning different parameters/layers of SocialNetwork app using HybridBandits.
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as example (though the findings are consistent across all rps). The best average P95 latency
(17.9ms) of “Microservices ∪ Rightsizing” or “MS ∪ RS” comes at the expense of 29 pod
restarts per round as seen from Figure 4.3. The microbenchmarking strategy (“MB-50” in
4.3) nearly matches the best method’s P95 latency (19.2ms), with nearly 30% fewer pod
restarts per round (20 restarts).
Takeaway 3. HybridBandits + microbenchmarking strategy of OPPerTune reduces the
cost of tuning in terms of service disruptions in deployment significantly, while achieving
competitive performance.

4.10 Related Work
Performance optimization of systems through configuration tuning is a long-studied prob-
lem [91, 141, 138] that continues to garner interest from the systems research community.
Here, we discuss closely related work.

4.10.1 Configuration tuning

Prior works on configuration tuning mainly focus on parameters of specific subsystems
of applications [55, 38, 161, 40, 159, 106, 172, 127] such as db and storage or of the
infrastructure on which the application is hosted [129, 135, 50, 51, 148]. In such works, the
configuration search space is relatively small and the advantages of jointly tuning parameters
across the software stack are not considered. Moreover, the approaches are tailored to the
specific subsystem being tuned, sometimes requiring domain expertise [55, 38]. Recently,
tuning parameters across the software stack [114, 58] and jointly tuning parameters of
multiple components of an application [149, 147] are gaining attention. Such works either
ignore the cost of reconfiguration [147] or require an expensive offline mode training to
perform post-deployment tuning[58, 149, 114].

4.10.2 RL/Bandit algorithms

While there are several RL-based configuration tuning approaches [134, 129, 176], they
are either limited in the type of parameters being tuned or are inefficient for online post-
deployment tuning scenarios. Some approaches do handle hybrid parameter spaces [102, 115]
via cascaded optimization which are quite effective if trained offline. Further, RL algorithms
require accurate state information (e.g, utilization metrics), which is additional engineering
overhead in enterprise scenarios. Our proposed HybridBandits, on the other hand, can tune
all types of parameters in deployment without the need for state information.

Recent work on learning trees using bandit feedback [69, 67] are meant for categorical
spaces. Popular tree learning algorithms like CART [53] and C4.5 [130] do not apply to
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the bandit feedback setting because they need access to labeled training data (which in our
scenario means optimal parameters for different context vectors, which we do not have).

4.10.3 Tuning frameworks
Recent works have addressed the need for a generic configuration tuning framework for
production systems [182, 156, 97, 135, 78]. KEA [182] is Microsoft’s internal tuning
framework for cluster-wide configurations. It uses historical data to make decisions on
parameters in the pre-deployment stages, unlike our work that focuses on post-deployment
tuning. Google’s Vizier [78] is their internal service for hyper-parameter tuning of ML
workloads, in the offline setting. SelfTune [97] is a recent framework from Microsoft
for tuning cluster managers, with support for post-deployment tuning. However, it lacks
support for tuning categorical parameters and requires domain expertise for setting up tuning
instances for complex, distributed applications. Twine [156] is Meta’s cluster management
system that provides workload-specific customizations such as tuning of hardware and OS
settings. OpenTuner [42] provides a framework to build domain-specific tuners.

4.11 Conclusions
We have designed, built, and widely deployed the OPPerTune configuration tuning service.
Our work differs from a lot of systems work on performance optimization and configuration
tuning in many ways: 1) we tackle challenges arising in post-deployment tuning, 2) we focus
on sample complexity of algorithms as well as the cost of tuning, unlike systems tuning
efforts that rely on offline training or controlled settings, 3) we give an end-to-end solution
for configuration tuning, that is fairly general, and readily applicable to various systems
optimization scenarios. We demonstrate through extensive experiments that our techniques
yield state-of-the-art performance, are sample efficient, and reduce the tuning cost.





Chapter 5

Proposed Work: Bottleneck Detection
and Mitigation

This chapter focuses on our proposed work. We will first discuss some preliminary results,
followed by the proposed work that we plan to explore.

The microservices architecture enables independent development and maintenance of
application components through its fine-grained and modular design. This has enabled
rapid adoption of microservices architecture to build latency-sensitive online applications.
In such online applications, detecting and mitigating sources of performance degradation
(bottlenecks) are critical. However, the modular design of microservices architecture leads
to a large graph of interacting microservices whose influence on each other is non-trivial,
complicating bottleneck detection and mitigation. This chapter begins with a discussion
of our preliminary work, in which we investigate the efficiency of Graph Neural Network
models in identifying bottlenecks. This is followed by a review of additional challenges that
require resolution and our proposed solution to overcome them.

5.1 Preliminary Work

5.1.1 Introduction

The microservices architecture is an architectural style that allows applications to be decom-
posed into fine-grained, modular, and interacting services, called microservices. Under this
architecture, each microservice can be independently designed, thereby enabling independent
development, maintenance, scaling, and fault isolation (at the level of microservices) [73].
These benefits make the microservices architecture well suited for designing online, customer-
facing applications where performance and availability are critical [61, 62]. Accordingly,
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microservices applications are widely replacing monolithic or multi-tier applications at
Amazon, Netflix, Alibaba, Twitter, Apple, and Ebay [73, 112].

Detecting and mitigating performance bottlenecks in online applications is crucial to
provide a good customer experience [46, 62]. For example, experiments at Amazon showed
that an additional 100ms of latency can reduce the amount of sales by 1%; similarly, exper-
iments at Google showed that increasing the time to display search results by 500ms can
reduce the revenue by 20% [99]. Long tail latencies that significantly affect the revenues
of online applications are often a result of performance bottlenecks that do not necessarily
lead to errors or faults and instead arise due to resource saturation, resource contention, or
microservices application misconfiguration [73, 74, 129, 146]. Regardless of the underlying
cause of performance bottlenecks, it is essential to have a technique that quickly adapts to
dynamic online workloads and accurately detects bottlenecks with high recall and precision.
A low recall is especially problematic as it implies that performance issues go unaddressed.

Microservices architecture has unique characteristics compared to other architectural
styles that complicates bottleneck detection:

• While the modular architecture allows isolating performance issues at the level of individual
microservices, the complex interaction between microservices leads to back-pressure
effects and cascading performance degradation, making it difficult to precisely pinpoint
the performance bottleneck(s) [126].

• Employing data-driven approaches that can learn such complex interactions is difficult due
to scarcity of labeled data for bottlenecked class in production systems [74].

• Frequent software updates, and components like caches, message queues, etc., which
are inherent to microservices architecture, lead to time-varying interactions between
microservices [129, 112] necessitating a technique that can generalize to such dynamicity.

For applications implemented using monolithic or multi-tier architecture, the problem
of bottleneck detection has been studied extensively [133, 45, 80, 36, 57, 139, 154, 163, 41,
164]; these studies continue to influence bottleneck detection research for microservices. For
the microservices architecture, a popular approach to detect bottlenecks is to employ end-to-
end distributed tracing systems like Jaeger [9], that are commonly employed by distributed
systems deployed in the industry today [113]. However, such systems cannot capture the
complex relationships between different microservices [129]; further, such systems still
require manual effort and insight to actually detect performance bottlenecks. In general, the
problem of detecting bottlenecks has garnered wide attention from the academic community
as well [77, 81, 52, 171, 79, 107, 173, 162, 103, 170]. Recognizing the complex relationship
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between different microservices and the conditions that lead to anomalous behaviour, which
are not always known in advance, is difficult for simpler algorithmic approaches to detect [74].
Recently, the availability of vast amount of tracing data has motivated data-driven approaches
for performance management of microservices architecture [74, 129, 112, 72]. However,
prior works that incorporate data-driven approaches either fail to fully use the structural
information of the application deployment [129, 74], or use multiple complex models, thereby
complicating the solution [72].

This preliminary work explores the use of Graph Neural Networks (GNNs) [59, 180]
to detect bottlenecks in online microservices applications. GNNs are ideally suited for
analyzing microservices applications:

• GNNs and their variants have produced ground-breaking performance on graph data [180]
making them a natural choice for analyzing microservices call graphs [126, 112, 116].

• Models like GNNs are ideally suited to capture back-pressure and cascading performance
degradation [73, 126] along the call graphs as they learn the dependence of graphs via
message passing between the nodes of graphs [180].

• GNNs can generalize to dynamic graphs through transfer learning [86, 83] making them an
ideal choice for microservices architecture where the call graphs are dynamic in nature [112,
129], saving retraining costs.

• GNN architectures can be regularized to ensure representation learning equilibrium across
multiple classes thereby avoiding the multi-class imbalance problem seen in traditional ML
algorithms [142]. The difficulty in collecting traces with bottlenecks in production systems
makes GNN an ideal choice as it does not overfit on the majority (non-bottlenecked)
class [74].

Motivated by the above observations, this preliminary work explores the use of GNNs
for detecting performance bottlenecks in microservices applications by designing B-MEG
(Bottlenecked-Microservices Extraction using GNNs), a framework with two stages of GNN
models. Preliminary results on a public dataset [128] are encouraging and show that B-
MEG performs better than existing work that we compared against [129] for benchmark
applications with a large number of microservices and complex call graphs (even when the
training dataset is highly imbalanced). Compared to the Support Vector Machine (SVM)
model used in existing work, B-MEG provides up to 15% and 14% improvements in accuracy
and precision, respectively, and close to 10× improvement in recall of the bottlenecked classes.
A detailed empirical comparison of B-MEG against other models and tools, such as those
discussed in Section 5.1.2, is left for future work.
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5.1.2 Background and Related Work

Performance Anomalies and Bottlenecks

In systems performance, an anomaly is a deviation from the expected performance and
performance bottlenecks are the root causes of such performance anomalies. The bottlenecks
can be broadly categorized into the resource saturation bottlenecks and the resource con-
tention bottlenecks [89]. These performance bottlenecks can manifest as single, multiple,
and shifting or cascading bottlenecks [89]. The single bottlenecks are usually the result of
resource saturation, whereas the multiple bottlenecks result from interdependency between
different components of the system. The cascading bottlenecks, where bottleneck shifts from
component to component, is a common behaviour seen in microservices architecture that
complicates performance management [89, 73, 126].

Call Graphs and Traces

The series of Remote Procedure Calls (RPC) between microservices that service a user
request is called a call graph [112]. The nodes of the call graph are RPCs of microservices
and the edges correspond to an invocation of RPC from an upstream microservice to a
downstream microservice. An analysis of microservices deployment in Alibaba clusters
showed that at least 10% of the call graphs contain more than 40 microservices, and some
call graphs can have thousands of microservices [112].

A single request type can have different call graphs due to different user parameters,
components like caches and message queues, and asynchronous executions [112]. Further,
agility in microservices architecture can lead to updates in microservices that can change the
dependencies between them, thereby changing the call graphs.

Call graphs can be obtained using end-to-end tracing systems like Jaeger [9]. A trace is a
data/execution path through the system, and can be thought of as a directed acyclic graph of
spans, where a span is a logical unit of work. A distributed application can be instrumented
at the RPC-level to get call graphs of each request.

Luo et al. [112] analyze large-scale deployments of microservices at Alibaba clusters.
The authors note that at least 10% of the call graphs contain more than 40 microservices, and
some call graphs can have hundreds and thousands of microservices. The authors also talk
about the highly dynamic nature of call graphs during runtime noting that a single online
service can have more than nine classes of topologically different call graphs.

Graph Neural Networks (GNN)

GNNs are neural network models that are designed to learn representations on graph-
structured data via feature propagation and aggregation. The input to a GNN is the graph
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representation of the problem being solved, where the graph could be explicit like in the case
of call graphs, or implicit where an effort is involved to build the graph [180]. GNN outputs
a representation for the input graph, called the embedding, using the features of the initial
graph representation and the structure of the graph. These learnt representations are used
to perform downstream tasks like graph classification, graph clustering, node classification,
etc. The key advantage of GNN compared to standard ML frameworks is that GNNs can pro-
vide hierarchical convolutions in non-euclidean spaces. This is accomplished by a message
passing process aggregating the embeddings of the neighbors of individual nodes, which
in turn contain information about their neighbors. This way, the influence of neighboring
microservices in a call graph can be learnt and the patterns that lead to propagation of
bottlenecks to neighbors can be detected.

Related Work

Bottleneck detection in multi-tier distributed systems: Wang et al. [164] empirically
show that system services like garbage collectors and practices such as VM colocation can
lead to fluctuating bottlenecks which are difficult to detect as no single physical or virtual
resource is completely saturated. In a follow-up work [163], the authors define bottlenecks
that are caused by transient events like garbage collection and bursty workloads as “transient
bottlenecks” and detect them using correlation analysis. The above works do not consider the
effects of the connected components of a distributed application, which is necessary when
analyzing microservices applications as bottlenecks propagate to neighbors.
Bottleneck detection in microservices applications: There is a large body of literature
related to the general problem of bottleneck detection; we refer interested readers to a recent
survey [144]. We now discuss more closely related prior works to put our work in context.
FIRM [129] uses a Support Vector Machine (SVM) model to detect bottlenecks on the critical
path of the call graph. The SVM model is trained using hand-crafted features that capture
the per-critical-path and per-microservice performance variability. However, FIRM does
not capture structural effects of call graphs as it treats each microservice independently for
bottleneck detection.

Seer [74] is an online cloud performance debugging system that leverages deep learning
to detect and prevent QoS violations. Seer uses a hybrid neural network consisting of CNN
and LSTM networks to learn spatial and temporal patterns that lead to QoS violations.
However, analysis of Alibaba’s production systems suggests that CNN-based approaches fail
to characterize complex graph dynamics and are not applicable to real-world applications;
instead, the authors suggest the use of GNNs [112], motivating our work.

Sage [72] uses Causal Bayesian Network (CBN) to capture the dependencies between
microservices. However, the assumption in Sage that the latency of non-leaf nodes in the call
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graph is determined by the wait time of its child nodes might not always hold. When a non-
leaf child node is a message queue [112], the parent communication could be synchronous or
asynchronous, depending on whether the queue is full or not [112]. Recent works [174, 168]
have shown the ability of GNNs to capture such causal relations, making additional models
to capture causality redundant.

SuanMing [79] presents a framework for predicting future root causes to prevent the
consequent performance loss. The framework consists of a Load Forecaster which predicts
the number of user requests, which is an input to the next stage, Predictor which predicts
the performance of each microservice. The framework compares the predictions with user-
specified goals to detect anticipated performance degradation. However, the assumption in
SuanMing that the performance of the application is only dependent on type and amount of
requests arriving at each service instance need not hold for data stores of the application which
affect performance significantly [73, 74]. Even for stateless microservices, performance can
depend on the payload size.

T-Rank [173], using latency as a bottleneck metric, detects bottlenecks based on Spectrum
Based Fault Localization (SBFL). However, SBFL cannot capture the complex nature of
microservices and incorrectly categorizes hot-spots, microservices that are shared across a
significant number of call graphs [112], as bottlenecks.

Brandón et al. [52] present a graph-based framework that employs expert knowledge to
detect bottlenecks. Through this framework, the authors also demonstrate the advantages of
using graph techniques over ML techniques that do not exploit graph data. Our framework
combines these two strategies by using a graph ML technique and alleviates the need of
expert knowledge.

Application Performance Monitoring (APM) tools: APM tools provide the ability to
observe and manage the performance of an online application, including bottleneck detection.
AppDynamics [29] leverages specialized ML models and various metrics collected across
the application to detect bottleneck microservices. Dynatrace [31] uses context (topology,
traces, and code-level) information to build and analyse a fault-tree to pinpoint bottlenecks.

Use of GNN for microservices application: GNNs have been used to analyze microser-
vices applications but not for the specific problem of bottleneck detection. For instance,
GRAF [126] is a resource allocation framework that utilizes gradient descent, using a trained
GNN model, to detect if a given CPU configuration would violate the SLO. Luo et al. [112]
perform a comprehensive analysis of the large-scale deployment of microservices in Alibaba’s
production clusters and observe that the same service (application) can have multiple call
graphs, complicating performance analysis. Hence, they use InfoGraph [150], a GNN based
learning scheme, to cluster call graphs that are similar in terms of topology and composition
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(a) Graph classifier (stage 1) (b) Node classifier (stage 2)
Fig. 5.1 The two stages in the B-MEG framework.

to simplify performance analysis. Mathai et al. [116] use GNNs to analyze a monolithic
application by translating it into microservices and employing a novel heterogeneous GNN
to analyze and cluster the monolithic application’s programs, tables, and files (as nodes) and
relationships between them (as edges).

5.1.3 Objective and System Design
We divide the problem of detecting bottlenecks into two sub-problems, the detection of
potential anomalous traces (i.e., traces affected by bottlenecks), followed by detection of
potential bottlenecks in such anomalous traces. We translate the sub-problems of detecting
anomalous traces and potential bottlenecks into graph classification and node classification
tasks, respectively. This division of problem is motivated by the benefits of hierarchical
classifiers [143].

In a flat classification, where a single classifier classifies all the examples, the number of
classes for an application with n microservices would be n+1, one for each microservice and
one additional class that corresponds to no bottlenecks. Based on the intuition that traces
with bottlenecks would be similar to each other irrespective of the specific bottlenecks [121],
we categorize them into one meta class—anomalous traces. This allows the use of a binary
classifier as the first stage that classifies a trace as anomalous or regular. The traces classified
as anomalous are provided as input to the second stage that detects potential bottlenecks in
them. The main disadvantage of this design is the error propagation from first stage which
can be controlled by varying the classification threshold of the first stage. We empirically
compared the performance of a flat classification model versus the hierarchical model
(B-MEG) and found that the hierarchical model leads to two simpler models with better
performance which further motivated this design.

The B-MEG framework, as shown in Figure 5.1, consists of 2 stages with the first stage
responsible for classifying potential anomalous traces and the second stage responsible for
classifying potential bottlenecks. The first stage uses a Deep Graph Convolutional Neural
Network (DGCNN) [60] for classifying if a trace is anomalous, and the second stage uses
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an inductive graph convolution training regime for pinpointing the microservices that are
responsible for causing the anomaly. The choice of DGCNN for graph classification is due
to its superior performance on inductive learning of graph representations without feature
engineering. The node classifier is a vanilla Graph Convolution Network (GCN) architecture
where the number of convolution layers were decided based on experiments.

The architecture of the DGCNN model, shown in Figure 5.1a, consists of four sequential
stages: (i) four GCN layers to hierarchically extract the local substructure features of a node
and define a node ordering [98]; (ii) one Sort Pooling layer for sorting the ordering under
a pre-defined ordering and unifying the input sizes [177]; (iii) a sequence of traditional
Convolution 1D layer, a max-pooling layer, and another Convolution 1D layer to read the
sorted graph representations; and (iv) one post-processing dense layer followed by a softmax
layer to make predictions.

For the node-classification task we use a semi-supervised graph convolution framework
with three GCN layers, followed by a post-processing feed-forward and a softmax layer
for predictions. The GCN layers hierarchically extract node features and pass it on to
post-processing layer for classification.

5.1.4 Evaluation

In this section, we first describe the publicly available dataset [128] that is used to evaluate
the efficacy of B-MEG in detecting potential bottlenecks in microservices applications.
Following this, we describe the methodology and compare the preliminary results against
SVM, the model used to detect bottlenecks in FIRM [129].

Dataset

The dataset [128] released as part of the FIRM project [129] contains traces of social network-
ing, media microservices, and hotel reservation applications from the DeathStarBench [73]
suite and TrainTicket benchmark [181] application. Most traces consist of a single bottleneck,
the cause of which is an artificially induced resource interference, while the remaining traces
have no bottlenecks. We refer the readers to Gan et al. [73] and Zhou at al. [181] to learn
more about the functionalities of these applications.

Methodology

In this preliminary work, we focus our methodology on studying the effectiveness of GNN
models on imbalanced datasets, which are the norm given the scarcity of production systems
traces with bottlenecks [74]. To evaluate B-MEG’s ability to handle the multi-class imbalance
problem, we create three datasets each consisting of 790,000 traces—A, B, C—with the
ratio of number of traces in the dataset with a microservice as the bottleneck to the number
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of traces without bottlenecks being 0.3, 0.1, and 0.01, respectively. The choice of 0.3 is to
evaluate the performance of B-MEG for a fairly balanced dataset. The choice of 0.1 and 0.01
is motivated by similar ratios reported in production systems [103]. The datasets are created
by random sampling to avoid any unexpected bias in them. We empirically evaluated how the
performance of B-MEG varies with the total size of the dataset and chose the size at which
the performance plateaued. The training time for the applications varies from 2–3 hours.

We use the bottleneck detection technique from FIRM [129] as the baseline to evaluate
B-MEG’s performance. FIRM [129] derives two features, the relative importance and conges-
tion intensity, from service time of microservices to train an SVM model to detect bottlenecks.
Similar to FIRM [129], we train both the models using service time of microservices as
feature as it correlates well with bottleneck occurrence, but without any feature engineering.
Using 80% of the traces from each class as the training data, both the models are trained
separately and inductively where each trace is treated as a stand-alone instance; the remaining
20% dataset forms the test data. Unlike prior works [74, 129] that focus only on accuracy, we
use other metrics like recall (measure of how many of the true bottlenecks get detected) and
precision (measure of how many of the classified bottlenecks are truly bottlenecks) which, as
discussed in Section 5.1.1, are important when the dataset is imbalanced.

Results

Evaluation on Imbalanced datasets Figure 5.2 shows the results for datasets A, B, and C
(with different degree of class imbalance) and different benchmarking applications for SVM
and B-MEG. For the social networking (SN) application, as seen in Figure 5.2a, B-MEG
outperforms SVM with respect to all the metrics for dataset A. This suggests B-MEG’s
ability to effectively learn patterns that cause bottlenecks with a fairly imbalanced dataset
without any feature engineering. For dataset B, B-MEG does better than SVM for all the
metrics except for recall of bottlenecked classes, with SVM’s value being 0.81 and B-MEG’s
0.78. However, this advantage of SVM comes with a very small recall (0.39) for the non-
bottlenecked class, an undesirable trade-off. Moreover, B-MEG is capable of maintaining
a good trade-off between overall precision (0.74) and recall (0.8) among all the classes,
providing a high recall (0.81) for the non-bottlenecked class even when there is significant
class imbalance. For dataset C, where the class imbalance is extreme, SVM has higher
accuracy (0.78) than B-MEG (0.71), but suffers from a poor recall for bottlenecked classes
(0.07). B-MEG on the other hand, provides a reasonable recall for bottlenecked classes
(0.67), proving its ability to balance precision and recall even when the class imbalance is
extreme. We see similar trends as dataset C when we further increase the class imbalance
ratio to 0.001 (note that dataset C has a ratio of 0.01). We note that the call graph of social
networking application in the FIRM dataset [128] has 31 microservices and 18 different paths
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Fig. 5.2 Performance comparison of SVM and B-MEG on the traces of social networking (SN) [73],
hotel reservation (HR) [73], and train ticket (TT) [181] applications. Metrics employed are accuracy
(A), precision for non-bottlenecked (NBP) and bottlenecked classes (BP), recall for non-bottlenecked
(NBR) and bottlenecked classes (BR). For all metrics, higher values are better.

from the root of the call graph to the leaf nodes, advocating the effectiveness of B-MEG in
learning patterns in complex call graphs to detect bottlenecks.

Figures 5.2b, 5.2e, and 5.2h show that SVM either outperforms or performs similarly
to B-MEG across all the datasets. Figures 5.2c, 5.2f, and 5.2i show similar trends for the
train ticket application. Considering that the call graphs of hotel reservation and train ticket
applications consist of 5 microservices with 3 different paths, and 11 microservices with 7
different paths, respectively, the results are not surprising. SVM’s inability to exploit the
structural information does not penalize its performance for these applications with a simple
call graph. On the contrary, the simple graphs aid SVM in learning thresholds that signal
bottlenecks. However, we note that B-MEG still does maintain a good balance between
precision and recall for these two applications.

The above evaluation results show that even when the class imbalance is extreme, B-MEG
effectively detect bottlenecks for microservices applications with large and complex call
graphs. Given that such imbalance is the norm in production system traces [112, 74], we are
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encouraged by B-MEG’s ability to maintain a good trade-off between precision and recall in
such cases.

5.2 Proposed Work
The preliminary work makes a case for employing GNNs to detect bottlenecks in applications
designed using the microservices architecture. In our preliminary experiments, B-MEG
performs better at detecting bottlenecks on imbalanced datasets for large and complex call
graphs than SVM. However, we only considered traces with single bottlenecks due to the
unavailability of multiple and cascading ones. In real-world applications, multi and cas-
cading bottlenecks are more common and harder to detect [74]. Our preliminary work
doesn’t account for the dynamicity of call graphs, which is inherent to microservices applica-
tions [112, 129]. Moreover, real-world applications comprise a wide range of telemetry (e.g.,
utilization) data that are not exploited in our preliminary and other related works. To have
a more representative solution that is applicable to real-world applications, we propose to
work on the following broad tasks for the completion of this thesis:

• Dataset: We plan to create and open source a dataset with bottlenecks to further
research on bottleneck detection. The lack of open source datasets, a major concern
in the general area of performance bottleneck detection in systems [89], also applies
to the microservices architecture. We plan to work with our industry collaborators to
create a dataset that is representative of the real-world scenarios.

• Improve the bottleneck detection methodology: In our preliminary work, we make
several assumptions to simplify the problem. We don’t consider multi and cascading
bottlenecks, which are common and harder to detect in real-world applications. We
don’t exploit temporal features that are useful in detecting bottlenecks [74]. Dynamic
call graphs, inherent to microservices applications, can be tackled using transfer
learning, which requires further investigation. The superior performance of simpler
models like SVM on simple call graphs motivates exploring a multi-model inference
where the model used for inference would depend on the complexity of the call graph.
Architectural changes to the model, aiming to obtain better performance and reduce
training and inference time, require further attention.

• Explore different bottleneck mitigation strategies: The source of bottlenecks in
real-world applications can be resource saturation, resource contention, application
misconfiguration, cluster misconfiguration, scheduling policies, etc., each of which
can be mitigated in various ways [74, 129, 109, 152, 108]. It is important to effectively
detect the source of the bottleneck and take the best action to mitigate it.
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5.2.1 Challenges
The various challenges related to our proposed work are:

• Dataset: The publicly available traces [128] only consist of single bottlenecks caused
via a single source (resource interference). In production systems, the bottlenecks
could also be of other types, multiple and cascading, due to different sources, including
resource saturation, misconfiguration, application bug, etc. Moreover, the publicly
available traces only contain information on the latency of each microservice. Other
metrics, like resource utilization by the microservices, can aid bottleneck detection.
However, simulating other types of bottlenecks, especially the cascading ones, is diffi-
cult as it results from a complex interaction among the microservices [74]. Collecting
traces and telemetry has a compute cost and, occasionally, performance cost. Depend-
ing on the telemetry implementation, it could be part of the critical path, making the
granularity of telemetry collection an interesting problem [129].

• Bottleneck detection: The bottleneck detection technique should ideally detect all
the types of bottlenecks (single, multiple, cascading) irrespective of the source of
bottlenecks. The cascading bottlenecks, common in microservices, are generally
harder to detect [129, 74]. It should also be capable of learning patterns without
needing a lot of data, as there is a scarcity of labeled data for bottlenecked classes in
production systems. Additionally, the technique should generalize to time-varying
interactions between microservices.

• Bottleneck mitigation: Assuming a list of bottlenecks and their characteristics (fea-
tures) are passed to the mitigation technique, it should first detect the source of the
bottleneck. Once the source is detected, the steps taken by the technique to alleviate
the bottleneck should take action quickly as microservices tend to have long recovery
periods [74]. Since the mitigation steps would be applied on an online application, the
steps themselves must not cause performance degradation.

5.2.2 Proposed Solution
We plan to explore the following tasks to tackle the challenges of our proposed work:

• Dataset: Firstly, we will build an automated framework to create the dataset. The
framework, through simple configuration files that provide the requirements for the
traces, should generate traces that can contain different bottlenecks via different sources.
We will create resource interference using anomaly injectors that consume resources
like CPU, memory, and network on the same node where the target microservices
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are running. To simulate resource saturation, we will vary the container’s resource
limits. For application misconfiguration, we will manually set the parameters of the
target microservice to values that lead to poor performance. We will carry out these
experiments on popular benchmarking applications [73, 181].

• Bottleneck detection: We will explore a) learning temporal patterns by using Recur-
rent Neural Networks, b) transfer learning to make B-MEG generalize for time-varying
interactions between microservices, c) Multi-model (GNN and SVM) inference where
SVM is chosen for simpler call graphs and GNN is chosen for complex call graphs to re-
duce inference latency, and d) detailed analysis of dataset size’s impact on performance
and training effort.

• Bottleneck mitigation: We will use data-driven approaches to detect the source
of bottlenecks. Once the source is detection, we will employ different techniques
appropriate to the source to mitigate the bottleneck. For example, if resource saturation
is the source of the bottleneck, we will vertically or horizontally scale the microservice.

5.2.3 Conclusion
Our initial work supports the use of GNNs for detecting bottlenecks in applications designed
using microservices architecture. In our preliminary experiments, the B-MEG model out-
performed the SVM model in identifying bottlenecks on imbalanced datasets for large and
complex call graphs. We plan to extend the preliminary work by creating a representative
dataset of traces for bottleneck detection, improving the bottleneck detection methodology
and exploring different mitigation strategies.





Chapter 6

Conclusion

Microservice Architecture has gained widespread use for building large-scale online applica-
tions. It involves breaking down an application into small, independent services known as
microservices that each handle a specific business function and communicate through APIs.
This approach offers greater agility, scalability, and fault tolerance, leading to its adoption
by companies such as Microsoft, Amazon, Netflix, and Twitter over traditional monolithic
or multi-tier architectures. Despite its benefits, managing the complex interactions between
microservices presents challenges in performance management. In this thesis, we specifically
target the problems of configuration tuning and bottleneck detection and mitigation.

We examine the effectiveness of various optimization and dimensionality reduction tech-
niques for the pre-deployment tuning of microservices applications. Despite the popularity
of microservices architecture, there is a lack of focus on setting configurations of individual
microservices for improved performance, often resulting in sub-par performance due to de-
fault settings. Our work highlights the importance of configuration tuning for microservices.
We examine the problem, identify key challenges, and evaluate techniques to address them.
Our research on different optimization techniques shows significant improvement in tail la-
tency, up to 46%, through configuration tuning. Although most algorithms perform well, the
optimal one depends on the application and combining algorithms may result in even better
performance for some applications. Our analysis also reveals that the optimal configuration
of a microservice, such as MongoDB, varies across applications and even instances within
the same application. We also investigate ways to reduce the tuning effort across algorithms.
Our study of dimensionality reduction techniques reveals that focusing on tuning the critical
path microservices with the highest service time variability is an effective way to reduce
tuning effort, typically by 2-6 times, while ensuring good coverage of important parameters
(confirmed by fANOVA analysis). Our conclusion is that dimensionality reduction based on
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system characteristics is a viable solution to the complex problem of optimizing a large state
space.

Recognizing the difficulties in the post-deployment tuning of real-world applications,
we introduce SelfTune and OPPerTune, frameworks designed to address these challenges.
SelfTune, an RL-based framework, allows operators to tune large-scale microservices ap-
plications and significantly improves system performance through experiments on Kuber-
netes’s Vertical Pod Autoscaler and the DeathStarBench microservice benchmark. We
have created, developed, and widely deployed the OPPerTuneconfiguration tuning service.
OPPerTunedistinguishes itself from other systems work on performance optimization and
configuration tuning in multiple ways: 1) addressing post-deployment tuning challenges, 2)
prioritizing sample complexity and tuning cost, unlike systems relying on offline training or
controlled settings, 3) providing a complete solution for configuration tuning that is widely
applicable to various systems optimization scenarios. Through extensive experiments on a
benchmarking application using synthetic and production traces, we demonstrate that our
techniques achieve state-of-the-art performance, are sample-efficient, and reduce tuning
costs.

We present our preliminary work on bottleneck detection and mitigation. Our approach
uses graph learning algorithms to identify bottlenecks in an open-sourced dataset of Death-
StarBench’s distributed traces. Our model provides better results than prior works on complex
call graphs. Furthermore, we delve into our proposed work, examine its challenges, and
briefly discuss the potential solutions we intend to probe.
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